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1.  Purpose.  The principal purpose of this ETL is b. ASTM D-5922, Standard Guide for
to introduce the reader to geostatistical techniques Analysis of Spatial Variation in Geostatistical Site
and to demonstrate their basic utility with respect Investigations.
to HTRW site investigations.  The ETL also will
include a discussion of statistical concepts that c. ASTM D-5549, Standard Guide for
support the science of geostatistics.  Practical Content of Geostatistical Site Investigations.
aspects of geostatistical techniques will be dis-
cussed in two ways.  First, practical references will
be made, when appropriate, during the discussion 4.  Distribution Statement.  Approved for public
of statistical concepts, and second, examples release, distribution is unlimited.
describing several aspects of the use of geosta-
tistical techniques in HTRW site investigations will
be presented and discussed in a section of this ETL
specifically dedicated to providing working exam-
ples.  This ETL also will include a brief literature
and software review; review of geostatistical appli-
cations; comparison of information that is gener-
ated with geostatistical methods to that information
obtained using classical statistical methods; and
some more recent geostatistical methods, such as
conditional simulation.

2.   Applicability.  This letter applies to all
USACE commands having HTRW investigation,
design, and remedial action responsibility within
the military or civil works programs.

3.  References.  Documents referenced in this
ETL are listed.  Appendix A contains additional
references useful in geostatistical application.

a. EM 200-1-2, Technical Project Planning
Guidance for HTRW Data Quality Design.

5.  Discussion.

a. Geostatistics is a powerful tool to assess
relationships among data obtained from various
locations.  It allows optimization of sample spac-
ing and frequency.  More importantly, geostatistics
also allows one to effectively estimate parameter
values in areas between actual sample points and
quantify the uncertainty of the estimated values. 
This can be very valuable in risk management and
design decision making.  This ETL builds upon the
principles introduced in EM 200-1-2.  

b. The ETL contains examples which illus-
trate the statistical principles discussed throughout
the document.  Not every application of geosta-
tistics to HTW projects could be illustrated, how-
ever, and the user must be aware of the basic
principles and seek appropriate applications.  Spe-
cific examples of typical cost-effective applications
of geostatistics are also given here. 
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(1)  Geostatistics, by the construction of a vari-  modeled as described in section 4-6.  Lastly,  the
ogram based on preliminary sampling, can be used model is used to perform block kriging, as
to determine the typical separation of sampling
points that delineate uncorrelated data.  The
range of the variogram is used as a basis for selec-
ting a sample spacing that minimizes costs and
provides independent data for determining, for
example, average exposure values for risk assess-
ment.  First, an adequate number of preliminary
samples are analyzed from the site (refer to sec-
tion 4-3).  Second, a variogram is constructed using
techniques described in Chapter 4.  Third, the range
of the variogram, as defined in section 2-3 is deter-
mined.  Lastly, the range or some multiple or frac-
tion of it, is chosen for future sample spacing.  The
variogram should be updated as new data are col-
lected.  For example, the variogram may indicate
data spaced more than 200 ft apart are uncorrelated. 
Closure sampling may then be proposed to be
spaced every 200 ft or more along an excavation. 
Smaller spacing results in unnecessary duplication
of information and unneeded expenditure of funds.

(2)  Geostatistics, through block kriging, can
yield estimates of the average concentrations to be
encountered in a typical daily excavation area/
volume.  For applications such as excavation of near
surface contamination, two-dimensional block
kriging could be used to estimate mean contaminant
concentration for specific excavation areas. 
Although this document does not address three-
dimensional block kriging for estimating mean con- or treatment volumes.  Even with ample site char-
centrations within given volumes, additional guid- acterization point data (borings or wells), the limits
ance and tools for three-dimensional kriging are of the treatment zone are imperfectly defined. 
available through references cited in Appendix A. Geostatistics allows one to evaluate the risk that
Alternatively, one can use two-dimensional block the size, and therefore cost, of the remediation may
kriging to estimate mean concentrations in different be larger or smaller than expected.  First, site char-
layers within a given volume.  These estimates can acterization is performed and adequate data are
then be averaged to approximate the overall average collected (as described in section 4-4).  Second, the
concentration within the entire volume.  This data are transformed by assigning a value of one or
assumes adequate data exist to perform the two- zero, depending on whether the value is above or
dimensional block kriging at the different depths. below, respectively, a given clean-up value or
To perform two-dimensional block kriging, adequate other criteria.  Third, the transformed data are then
site characterization data are collected (refer to used to construct a variogram as described in
section 4-4).  Second, the data gathered from the Chapter 4.  Fourth, this variogram is modeled as
areas of interest are used to construct a variogram, described in section 4-6.  Next, this model is used
as described Chapter 4.  Third, the variogram is in performing indicator kriging as described in sec-

described in section 2-4 for blocks of a size com-
parable to the daily excavation area/volume.  The
block-kriged values can then be used for estimating
the treatment plant loading, etc., related to that
block.  The kriging also quantifies the possible
variance in the average concentration for each
block that can be used to manage the risk of
operating a treatment plant.

(3)   Exposure concentrations for risk assess-
ment purposes can be computed, using geostatis-
tics, even though the site characterization data are
somewhat clustered or were collected using biased
sampling strategies.  Assuming the data are
already available and adequate in number (refer to
section 4-4), the first step is to compute a sample
variogram, as described in Chapter 4.  Second, the
variogram is modeled as described in section 4-6. 
Next, this model is used in performing a block
kriging operation over the inferred exposure area,
as described in section 2-3.  Finally, the block
kriging value can be used, along with the kriging
variance, to determine the exposure point con-
centration, assuming the data were normally
distributed (or were transformed to be normally
distributed).

(4)  The last example describes the use of geo-
statistics to quantify project risk for excavation

tion 2-6.  The kriging estimates essentially reflect a
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probability that the concentration at the points of described in this document as appropriate.  This is
estimation exceed the clean-up value or other stan- particularly true during planning of large-scale site
dard.  These kriging estimates can be contoured to characterization efforts or when there are risk
define areas or volumes of material that have a management or design decisions to be made that
certain likelihood of exceeding some cleanup value. must  consider the uncertainty of site characteriza-
The contour value is essentially the probability of tion results.  The same USACE elements should
exceedance.  Lastly, the size of the area defined by also encourage the use of geostatistics, where
different probabilities of exceedance can be deter- appropriate, by their contractors.  
mined and, using a unit cost or similar approach, a
cost-versus-risk curve can be developed.  This can b. USACE elements shall make every effort
be used in programming money for the project, as a to familiarize staff members actively supporting
basis for negotiating cleanup levels with regulators, HTRW projects with the fundamentals and poten-
or to help determine if the cost and time of addi- tial benefits of the application of geostatistics. 
tional characterization work will be offset by less This letter is a good starting point for learning
risk during construction.  Alternatively, rather than about the use of geostatistics for HTRW projects. 
transforming the data to ones and zeros, the actual Users are encouraged to attend appropriate
values are kriged and the kriging variances can be training.
used to determine prediction intervals on each esti-
mated value as described in section 2-6.  In the c. This letter sets out procedures for the tech-
vicinity of the point estimate, these prediction inter- nically correct application of geostatistics which
vals can be used to define the spread of potential are consistent with current practice, such as set
values expected within a given probability.  This forth in ASTM D-5922 and D-5549.  The techni-
assumes the data are normally distributed or have cal procedures outlined herein shall be considered
been transformed to be normally distributed.  when performing USACE in-house geostatistical

6.  Actions Required.

a. USACE elements identified in paragraph 2
shall consider applications of geostatistics as 

analysis or reviewing such analyses done by
USACE contractors.

FOR THE COMMANDER:
                                                                                       

2 Appendices KISUK CHEUNG, P.E.
App A - References Acting Chief, Environmental Division
App B - Notation Directorate of Military Programs



i

DEPARTMENT OF THE ARMY ETL 1110-1-175
U.S. Army Corps of Engineers

CEMP-RT Washington, DC  20314-1000

Technical Letter
No. 1110-1-175 30 June 1997

Engineering and Design
PRACTICAL ASPECTS OF APPLYING GEOSTATISTICS

AT HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE SITES

Table of Contents

Subject Paragraph Page Subject    Paragraph       Page

Chapter 1 Chapter 4
Introduction Practical Aspects of Variogram
General . . . . . . . . . . . . . . . . . . . . . 1-1 1-1
Scope . . . . . . . . . . . . . . . . . . . . . . 1-2 1-1
Organization . . . . . . . . . . . . . . . . . 1-3 1-2
An Overview of the Use of
  Geostatistics in Hazardous,
  Toxic, and Radioactive Waste
  Site Investigations . . . . . . . . . . . . 1-4 1-2
An Overview of Some Technical
  Aspects of Geostatistics . . . . . . . . 1-5 1-4

Chapter 2
Technical Aspects
of Geostatistics
General . . . . . . . . . . . . . . . . . . . . . 2-1 2-1
Regionalized Random Variables . . . 2-2 2-1
Variograms . . . . . . . . . . . . . . . . . . 2-3 2-6
Kriging . . . . . . . . . . . . . . . . . . . . . 2-4 2-9
Co-kriging . . . . . . . . . . . . . . . . . . . 2-5 2-14
Using Kriging to Assess Risk . . . . . 2-6 2-15

Chapter 3
Geostatistical Resources
and Tools
Texts on Geostatistics . . . . . . . . . . 3-1 3-1
 Useful Journals . . . . . . . . . . . . . . . 3-2 3-1
 Software . . . . . . . . . . . . . . . . . . . 3-3 3-2

Construction and Interpretation
General . . . . . . . . . . . . . . . . . . 4-1 4-1
General Computation of
  Empirical Variogram . . . . . . 4-2 4-2
Nonstationarity . . . . . . . . . . . . 4-3 4-3
Variogram Refinement . . . . . . . 4-4 4-6
Transformations and
  Anisotropy Considerations . . . 4-5 4-9
Fitting a Theoretical
  Variogram  to the Sample
  Variogram Points . . . . . . . . . . 4-6 4-10
Additional Trend
  Considerations . . . . . . . . . . . . 4-7 4-13
Outlier Detection . . . . . . . . . . . 4-8 4-14
Cross-Validation for
  Model Verification . . . . . . . . . 4-9 4-14

Chapter 5
Practical Aspects of
Geostatistics in Hazardous,
Toxic, and Radioactive
Waste Site Investigations
General . . . . . . . . . . . . . . . . . . 5-1 5-1
Water-Level Examples . . . . . . . 5-2 5-1
Bedrock-Elevation Examples . . 5-3 5-6
Water-Quality Examples . . . . . 5-4 5-13



ETL 1110-1-175
30 Jun 97

ii

Subject Paragraph Page Subject    Paragraph       Page

Chapter 6
Review of Kriging Applications
Applicability of Kriging . . . . . . . 6-1 6-1
Important Elements of
  Kriging Applications . . . . . . . . 6-2 6-2
Errors in Measured Data . . . . . . 6-3 6-3

Chapter 7
Other Spatial Prediction
Techniques
General . . . . . . . . . . . . . . . . . . . . . 7-1 7-1
Global Measure of Central
  Tendency (Simple Averaging) . . . 7-2 7-1

Simple Moving Average . . . . . . 7-3 7-2
Inverse-Distance Squared
  Weighted Average . . . . . . . . . 7-4 7-2
Triangulation . . . . . . . . . . . . . . 7-5 7-3
Splines . . . . . . . . . . . . . . . . . . . 7-6 7-3
Trend-Surface Analysis . . . . . . 7-7 7-5
Simulation . . . . . . . . . . . . . . . . 7-8 7-5

Appendix A:  References

Appendix B:  Notation



ETL 1110-1-175
30 Jun 97

1-1

Chapter 1
Introduction

1-1.  General

a. This Engineer Technical Letter (ETL)
addresses the use of geostatistics at hazardous,
toxic, and radioactive waste (HTRW) sites.  One
very fundamental aspect of perhaps all HTRW site
investigations that deal with environmental con-
tamination is the need to characterize the extent
and spatial distribution of contamination.  Such a
characterization typically would include describ-
ing, using a variety of statistical or analytical tools,
spatial trends and variability.  A principal diffi-
culty in doing this is the fact that measurements
may be few, or may be sparsely scattered over
large regions.  A question that arises naturally in
this situation is how one might interpolate in order
to make predictions (or estimates) at points where
measurements of contaminant concentration are
not available.  Such interpolation will be referred
to as point, or punctual, estimation in this ETL. 
Additionally, an investigator may need to deter-
mine a single representative value for an area that
is represented by several measured or estimated
values or both; this will be referred to in this ETL
as block estimation.  Geostatistics is a set of sta-
tistical procedures designed to accomplish these
ends.  Geostatistics may be applied to many prob-
lems, other than contamination, that occur at
HTRW sites.  Even though this document addres-
ses only twodimensional applications, geostatistics
can be used in three dimensions as well.  Indeed,
there are many cases in which the third dimension,
usually stratification, is desirable to address.

b. Kriging is the principal geostatistical meth-
odology described in this ETL.  For introductory
purposes kriging can be defined as a technique for
determining the optimal weighting of measure-
ments at sampled locations for obtaining predic-
tions, or estimates, at unsampled locations;
additional definition of kriging is provided through-
out this document.  Kriging is well-suited for mak-
ing point and block estimates.  However, much of
the advantage of using geostatistical procedures,

such as kriging, lies not just in the point and block
estimates they provide, but in the information they
provide concerning uncertainty associated with
these estimates.  The uncertainty information is
usually quantified as either the standard deviation
(or variance) associated with kriging estimates and
is referred to as kriging standard deviation (or
kriging variance) in this ETL. 

c. Original geostatistical work involved
making estimates for the areal extent and concen-
trations of economic mineral deposits, in relation to
mining.  Today (1996), geostatistical techniques
continue to have a function in mining.  However, a
well-developed methodology that is capable of
interpolating a given set of measured values at dis-
crete locations into estimates for new locations or
developing an individual estimate for an area
including many locations, or both, has attracted
users from many disciplines, and there is a trend
toward incorporating geostatistics as standard cur-
riculum for most geo-science educational pro-
grams.  The use of geostatistical techniques as part
of HTRW site investigations is becoming common
because of the almost routine need for data inter-
polation as part of these investigations.

d. Once investigators have established that
their data are adequate as to quality and quantity,
geostatistics can provide powerful analytical tools
that result in quantitative characterization of areas
of special interest within the study area or the
entire study area.  These characterizations may
address spatial variation; for example, it may be
determined where values for concentrations of
contaminants in soils are relatively high or low, are
less than or greater than a specified value, or even
have a high or low probability of exceeding a
certain value.

1-2.  Scope

a. The scope of this ETL will be limited
principally to discussions and examples of two-
dimensional point and block estimations using a
geostatistical method known as kriging.  The ETL
will present the technical aspects of geostatistics
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through discussion of the assumptions behind and kriging theory than material included in Chapter 2. 
the mechanics of several types of kriging, including Chapter 3 also provides a brief generic discussion
ordinary kriging, which is applicable when the of kriging software.
mean for the variable of interest is constant over
the region of interest, and universal kriging, which c. Chapter 4 provides a detailed step-by-step
is applicable when the mean for the variable of discussion of variogram construction and demon-
interest changes gradually over the region.  The strates some pitfalls and solutions to this crucial
discussion also will address a specialized form of process.  Chapter 4 also discusses methodologies
kriging known as indicator kriging and the use of which investigators may use to evaluate their
information concerning uncertainty associated with variograms.
kriging estimates.  The fundamental concepts of
geostatistical kriging theory will be provided in this d. Chapter 5 provides a discussion of prac-
ETL; however, references will be provided for tical aspects of geostatistics in a presentation of
additional and more detailed information. several example kriging applications with data

b. The practical aspects of kriging will be dis- to illustrate a few of the many different ways
cussed through categorical examples of HTRW kriging can be used in HTRW site investigations
site investigations.  The phrase “HTRW site and are not presented with the same level of detail
investigations,” will refer to planning, analysis, used in Chapter 4.
and remediation implementation phases of HTRW
projects. e. Chapter 6 provides additional detail on

c. Additional topics included in this ETL such includes considerations investigators may use to
as review of applications and of some of the newer help determine if kriging is feasible for the appli-
geostatistical techniques will be limited.  The intent cation they have in mind, or reviewers can deter-
will be to familiarize the reader with these topics mine if the application of geostatistics was
and not to provide how-to knowledge. appropriate.

1-3.  Organization

a. This ETL is organized into seven chapters. such as simulation.
Chapter 1 is introductory and includes an overview
of the technical aspects of spatial prediction in
general and certain geostatistical concepts.  Chap-
ter 2 provides a detailed discussion of assumptions
and theory behind kriging, including equations and
concepts that will be useful to investigators who
wish to gain a better understanding of the technical
aspects, or mathematics, of kriging interpolation. 
As indicated, many of the concepts developed in
Chapter 2 are discussed in very general terms in
Chapter 1, so those readers desiring only an over-
view of kriging concepts may wish to read only
Chapter 1 and bypass Chapter 2 altogether.

b. Chapter 3 provides a review of texts that
contain much more detailed information regarding

from the HTRW field.  The examples are intended

some crucial aspects of kriging applications and

f. Chapter 7 provides an introduction to other
methods for spatial modeling.  This section also
includes discussion of advanced stochastic methods

1-4.   An Overview of the Use of
Geostatistics in Hazardous, Toxic, and
Radioactive Waste Site Investigations

a. General.

(1)  HTRW site investigations involve complex 
administrative, scientific, and engineering func-
tions and are truly interdisciplinary.  Scientists and
engineers, for instance, may be confronted with
administrative findings or directives, associated
with fiscal, managerial, or regulatory input, that
may either guide or constrain their work.  In a
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likewise fashion, scientific findings may define the particular HTRW site investigation and also have
scope of administrative effort. a good basic understanding of the fundamental

(2)  Scientists and engineers involved in elsewhere in this ETL, there are many techniques
HTRW site investigations have found that they available for gridding data; kriging has an added
have an implicit need for many disciplines to fulfill advantage of generating kriging standard devia-
the objectives of each particular investigation. tions that can be used as a measure of uncertainty.
Frequently, an HTRW site investigation will
benefit from input from earth-science disciplines b. Initial planning.
such as geology, hydrogeology, and chemistry,
among others.  Some HTRW site investigations are (1)  Initial planning may involve several
large enough to use several individuals from each aspects associated with implementing or operating
of these disciplines, as well as many others, for the a monitoring network; it also may involve recon-
duration of multi-year investigations.  Most disci- naissance evaluation of an existing network.  Addi-
plines associated with HTRW site investigations tionally, because monitoring is present in all
will benefit from knowledge or input from special- phases of HTRW site investigations, the same
ized and/or interdisciplinary branches; the geolo- opportunities for geostatistical applications asso-
gist, for example, will occasionally benefit from ciated with network analysis that occur in the
knowledge of geophysics.  Naturally, interdisci- initial planning stages may occur, perhaps often,
plinary input also can be very helpful, especially in throughout the investigation.  The information
geostatistics, where earth-science disciplines rely available from kriging standard deviations can add
on assistance from statisticians. much to sampling or monitoring network analysis. 

(3)  In this ETL and for its purposes, a com- (2)  For application of geostatistical tech-
plete HTRW site investigation is described con- niques, the most likely aspects of network imple-
cerning three relatively broad sequential activities mentation and operation to be addressed certainly
or phases.  These phases are referred to as initial include network design, evaluation, and modifi-
planning, analysis, and implementation of remedia- cation.  Geostatistics offer the investigator oppor-
tion plans.  Another very important HTRW site tunities to:
investigation activity, monitoring, is less discrete
and is a part of all three phases.  Monitoring (a)  Locate areas where existing sampling or
represents the basis for analysis, is often modified monitoring networks may provide strong or weak
as a result of analysis, and may be newly imple- estimates. 
mented as part of remediation.

(4)  Kriging techniques can and have been used decreasing the sampling or monitoring network
in any of the three phases. Only a few very basic density. 
applications of kriging techniques are described in
this ETL.  The intent of this ETL is to describe (c)  Evaluate the effect of removing or relocat-
basic concepts so that more elaborate applications ing certain monitoring locations or adding new
can be done based on a fundamental understanding locations to the sampling or monitoring network.
of the procedures involved. 

(5) For examples of more elaborate applica-
tions, the reader can refer to the material cited in (1)  Although aspects of network design can be
Chapter 3.  However, the best applications are quite important during analysis, the investigator is
developed by readers who have a clear under- likely to be concerned principally with using infor-
standing of the goals associated with each mation from monitoring networks to evaluate

geostatistical techniques.  As alluded to here and

(b)  Quantify the effect of increasing or

c. Analysis.
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environmental conditions throughout the specified (1)  One of the most common applications for
study area.  The evaluations may require either kriging techniques in the final phases of HTRW
point or block estimates.  Often, design factors are site investigations is evaluating compliance.  For
addressed in the analytical phase as well. instance, a question such as “Is the mean concen-

(2)  A common application for kriging tech- is ubiquitous to HTRW site investigations.  Mak-
niques in HTRW site investigations is estimating ing determinations concerning compliance is very
real means.  More common, however, is estimating similar to estimating areal extent as part of the
the extent of areal contamination.  Usually these analysis.  Investigators and managers have much
estimates involve chemicals in air, water, and soil; to gain from the confidence information available
however, if sufficient information is available, from kriging techniques as to the reliability of
such estimates could include a wide range of estimates as well as in optimizing monitoring
environmental factors that involve many issues networks.
other than contaminants.  Perhaps the most com-
mon examples concern geologic and hydrologic (2)  Kriging can also be very useful if man-
factors, such as depth to bedrock and groundwater- agers are interested in making decisions based on
level elevations.  Investigators need to realize that the probability of certain conditions existing.  If a
almost any set of measurements can be distributed condition can be defined by the manager, then, pro-
using kriging techniques, providing there is a viding there are adequate data, indicator kriging
sufficient amount and distribution of measured can provide an estimate for the probability of
information. existence.  A common example of this kind of

(3)  The investigator also needs to realize that probabilities that concentrations for a constituent
the resultant kriging estimates can be gridded. do or do not exceed, for example, an action level.
This gridding affords investigators opportunities to
perform mathematical or logical operations, or (3)  There are many operational remediation
both, on the kriging estimates, provided that issues that kriging techniques may address as well. 
investigators are comfortable with kriging esti- Remedial activities at HTRW sites often need esti-
mates.  Saturated thickness could, for example, be mates for amounts in general.  For instance, there
calculated from kriging estimates for groundwater could be a need for information regarding volumes
elevations and base of aquifer elevations. of contaminants to be treated, volumes of soil to be

(4)  Often, after preparing estimates for areal By combining estimates for different geologic,
properties, the investigator may appreciate the hydrologic, and chemical factors, estimates for
opportunity afforded by kriging techniques to eval- these volumes can be obtained from kriging tech-
uate the confidence associated with the estimates. niques in much the same way as saturated thick-
Maps of kriging standard deviations can provide nesses can be calculated.
the investigator with information concerning the
confidence associated with the kriging estimates. 
Although the areas of lowest confidence may be
well-known intuitively, maps of the kriging stan-
dard deviation are an important step toward quan-
tification.  More often than not, even the most The purpose of this section is to provide an
experienced investigator will benefit from careful overview of some of the procedures and concepts
study of maps of kriging standard deviations. to be treated in detail in this ETL.  Some of the

d. Implementation of remediation. in very general terms, with the goal of orienting the

tration of constituent x within compliance limits?”

application is making areal determinations for

excavated, volumes of soil to be stored, and so on. 

1-5.  An Overview of Some Technical
Aspects of Geostatistics

technical ideas and terminology will be introduced
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reader who may not be familiar with the area of     contribute to measurements taken at locations close
geostatistics. together being more closely related than measure-

a.  General considerations in spatial
prediction. (4)  The most obvious way one might proceed

(1)  The principal technical issue considered in simply to take an average of the sample values that
this ETL is spatial prediction or modeling values one does have and  assume that this value gives a
of a spatial process; in particular it is considered reasonable prediction at all locations in the region
how best to make use of measurements of a vari- of interest.  This may work adequately in some
able (such as pollutant concentration) at sampled cases, but one can also see the pitfalls in doing
locations to make inferences (or predictions) about this.  Using a single value for an entire region
that variable at unsampled locations or about makes an implicit assumption of spatial homo-
values of the variable for the region as a whole. geneity.  It ignores any spatial trends that might

(2)  A spatial process can be viewed as having nuity.  If it is known that the variable of interest
a large-scale or regional component and a smaller does have the tendency to be spatially correlated,
scale or local component; both of these compo- then it would make sense to use a weighted average
nents need to be accounted for when modeling a rather than a simple average in making a spatial
spatial process.  The large-scale component is prediction, with measurements at sampled loca-
referred to as the mean field and is most often tions that are nearer to the unsampled location
modeled by a spatial trend which may or may not being given more weight.  This then is the motiva-
be constant over the region.  The smaller scale tion for the geostatistical methods discussed in this
component is a random fluctuation which is mathe- ETL.  The method known as kriging, which is the
matically combined with the trend to make up the principal subject to be considered here, is a tech-
sample at a point.  The random component is nique for determining in an optimal manner the
usually assumed to be zero on the average but can weighting of measurements at sampled locations
be either positive or negative in individual samples. for obtaining predictions at unsampled locations. 
The separation of the trend from the random com- These optimal weights depend on spatial trends
ponents is problem- and scale-dependent and and correlations that may be present.
requires some judgment to determine.  There can
be several “solutions” to the problem of separating (5)  There are a number of ways to go about
the trend and random components that may be performing spatial prediction.  The geostatistical
useful for various geostatistical purposes when method of kriging covered in this ETL belongs to a
using a single set of data. class of methods known as stochastic methods.  In

(3)  Local-scale fluctuation of the variable of ments, both actual and potential, constitute a single
interest (e.g. water levels or contaminant concen- realization of a random (or stochastic) process. 
trations) at a sample point, although random, can One advantage of assuming the existence of such a
show some association (i.e. correlation) with the random process is that measures of uncertainty,
random fluctuations at nearby points.  This is such as the variance used in kriging, can be
referred to as spatial correlation.  Positive spatial defined.  These measures of uncertainty permit
correlation between measurements means that the objective assessment of the performance of a
random components at both points tend to have the spatial prediction technique on the basis of how
same sign, whereas negative correlation means the small such measures are.  Once a measure of
random components tend to have opposite signs. uncertainty has been selected, the weights to be
Both the “large-scale” trend and the positive used in spatial prediction may be determined so as
spatial correlation of the “local-scale” fluctuations to explicitly minimize the measure of uncertainty. 

ments taken farther apart. 

for spatial prediction at unsampled locations is

exist in the data and it also ignores spatial conti-

these methods, it is assumed that the measure-
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In short, the use of stochastic techniques provides and makes explicit the background assumptions
the investigator with a way of objectively quanti- that are being made.
fying errors and determining weights.  In practice,
spatial predictions obtained using kriging are b. Important geostatistical concepts.  Below
almost always accompanied by a measure of the are some of the key ideas in geostatistics that will
associated error.  Most kriging practitioners be given detailed attention in this ETL.  They are
consider such an error evaluation to be an integral introduced in much the same order that they are
part of the analysis, and point to error analysis as discussed in Chapter 2, where more detail is
one of the principal advantages of using kriging (or presented.
stochastic techniques in general) over other
procedures. (1)  Variograms.

(6)  Nonstochastic techniques, on the other (a)  A central idea in geostatistics is the use of
hand, are typically applied strictly empirically, spatial correlation to improve spatial predictions,
with no assumptions concerning the existence of an or interpolations.  The variogram is the principal
underlying random process and with no theoretical tool used to characterize the degree of spatial
framework with which to evaluate statistically the correlation present in the data and is fundamental
performance or optimality of the techniques. to kriging.  The correlation between measurements
When they are applied in such a manner, it is not at two points is usually assumed, as described
possible to evaluate in advance whether such a above, to depend on the separation between the two
procedure would be expected to yield results that points.  Values for all possible pairings of sample
are satisfactory.  Two techniques that are com- points can be examined by squaring the difference
monly applied in a nonstochastic setting are simple between the values in each pair.  The squared
averaging, mentioned above, and trend analysis, differences are then categorized according to the
which is a least- squares method for fitting a distance separating the pair.  For small separa-
smooth surface to the data.  Even though these tions, or lags, the squared differences are usually
techniques are usually applied nonstochastically, it small and increase as the lag increases.  A plot of
is still possible to assess their performance if a the squared differences per sample pair as a func-
stochastic setting is assumed.  Loosely speaking tion of lag is referred to as the sample variogram. 
(these ideas are discussed more precisely in Chap-
ter 7), simple averaging would perform well if (b)  The general behavior of the sample vari-
there is no trend and no spatial correlation, and ogram points relates to the spatial correlation
trend analysis would perform well if there is a between sample sites and can provide investigators
trend that can be modeled, but no spatial correla- with qualitative information about the spatial pro-
tion.  Lack of correlation in the observations is one cess, but in order to use this information in a math-
assumption that is made in ordinary statistical ematically rigorous manner as a basis for inter-
regression analysis, and in fact trend analysis, if it polation, a function with specific properties must
is placed in a stochastic setting, is actually one be fit to the sample variogram points.  The fit, as
special type of regression.  The stochastic method with all curve-fitting procedures, takes the scat-
of kriging explicitly incorporates the spatial corre- tered points and passes a smooth curve through the
lations which are ignored in trend analysis.  In points.  The curve, which can be represented by a
Chapter 7, a few other common techniques that are mathematical expression or function, is called a
usually applied in a nonstochastic setting will be model.  Several named models with characteristic
discussed briefly.  Most of these techniques are features introduced in Chapter 2 are commonly
designed to incorporate the notion of spatial con- used in geostatistics.  The resultant variogram
tinuity, but the way it is incorporated may be model is used to determine kriging weights for use
subjective.  Kriging provides an objective means of in interpolation. 
incorporating the presence of spatial correlation
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(2)  Directional variogram and anisotropy.  It locations near points with measurements tending to
is often the case that spatial correlation depends be smaller.  One can then associate with any spa-
not only on distance between points, but also on tial prediction a variance, which gives an indi-
direction.  For example, measurements at pairs of cation of the uncertainty in that predicted value. 
points 100 m apart with the line between them As mentioned before, this measure of uncertainty
oriented in a north-south direction may have a gives kriging one of its principal advantages over
different correlation than measurements at points many other techniques.
the same distance apart but with the line joining
them oriented in an east-west direction.  The (4)  Trends and universal kriging.  Special
spatial process is said to exhibit anisotropy, and attention must be given in kriging to the question
what is known as a directional variogram must be of whether there are spatial trends in the data.  A
used for the geostatistical analysis. trend in this case is usually any detectable ten-

(3)  Kriging and kriging variance. tion of the coordinate variables but can also be a

(a)  Kriging yields optimal spatial estimates at example, aside from random fluctuations, measure-
points where no measurements exist in terms of the ments of groundwater elevations may exhibit a ten-
values at points where one does have data.  As dency to increase in a consistent manner the farther
discussed above, placing the problem in a sto- one proceeds in a certain direction.  A kriging
chastic framework permits precision-defining analysis in which there is no spatial trend is known
optimality.  In kriging, the restriction is first as ordinary kriging;  when a trend does exist, uni-
imposed that the predicted value at any point is a versal kriging should be considered.  In universal
linear combination of the measured values; that is, kriging, one attempts to account for the trends
the kriging estimate is a linear predictor.  Given present.  For example, it might be assumed that the
this restriction, the values of the coefficients in this trend can be represented as a linear function of
linear function are chosen so as to force the pre- coordinate variables.  The form of the trend model
dictor to be optimal. is then incorporated into the universal kriging

(b)  The first criterion imposed is that the
estimate be unbiased, or that in an average sense (5)  Block kriging.  What has been discussed in
the difference between the predicted value and the preceding paragraphs is usually known as
actual value is zero.  The second optimality cri- point, or punctual, kriging.  In point kriging, the
terion is that the prediction variance be minimized. goal is to predict the value of a variable at discrete
This variance is a statistical error measure defined locations.  By contrast, in block kriging the goal is
to be the average squared difference between to predict the average value, over a specified
predicted and actual values.  Because the kriging region, of a variable.  As in point kriging, the opti-
estimate minimizes this variance, it is known as the mal predictor is a linear combination of the mea-
best (minimum variance) unbiased linear predictor. sured data values, and degree of uncertainty is
This minimization is performed algebraically and indicated by a block kriging variance.  Block
results in a set of equations known as the kriging kriging variances tend to be smaller than point
equations, which give an explicit representation of kriging variances because averages tend to be less
the optimal coefficients (weights) in terms of the variable than individual values.
variogram.  The form of these equations is pre-
sented in Chapter 2. (6)  Prediction intervals and normality.

(c)  Also given in Chapter 2 is an expression (a) A standard kriging analysis will give two
for the kriging variance.  This variance depends on values for any location: the optimal kriging esti-
geometry of the data sites, with the variance at mate and the kriging variance.  The variance

dency for the measurements to change as a func-

function of other explanatory variables.  For

equations to obtain the optimal weights.
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provides a measure of uncertainty for the predic- (a)  In indicator kriging, analysis is performed
tion.  In some cases, it may be desirable to go even using what are known as indicator variables rather
further in specifying the nature of the uncertainty than the measured data themselves.  An indicator
than simply giving the variance.  One way to pro- variable is thus a special kind of transform of the
ceed is to try to obtain what is known as a predic- measured data and can have only two possible
tion interval.  Here one seeks an interval such that values:  0 or 1.  To obtain the indicator variables
there is a certain probability, typically 95 percent, to be analyzed, first specify a threshold value, say
that the actual value lies in this interval. c, which may represent, for example, a contami-

(b)  Finding such an interval often hinges on importance.  At each measurement location, the
having knowledge of the probability distribution of indicator variable is then assigned a value of 1 if
the variables being sampled.  One ideal situation is the measured value is less than or equal to c, and is
when the variable of interest, e.g., contaminant assigned a value of 0 if the measured value is
concentration, can be assumed to have a normal greater than c.  This kind of transform will allow
distribution.  In this case, given the set of measured censored data, or data reported as less than some
values, a potential value at an unsampled location reporting limit, to be included in the analysis if the
has a normal distribution with mean given by the reporting limit is  less than  or equal to the cutoff
kriging estimate and variance given by the kriging value of c.  After the indicator transform has been
variance.  It is thus, using classical statistics, performed, the kriging analysis is  performed using
straightforward to use this normal distribution to these indicator variables in the same manner dis-
obtain a 95 percent prediction interval for concen- cussed above; first a variogram is obtained, and
tration at the unsampled location. the kriging equations yield the optimal linear pre-

(7)  Transformations.  Having a prediction
interval will generally be much more informative (b)  Whereas the indicator kriging analysis is
than simply having the kriging estimate and kriging done using only 0’s and 1’s, the interpolated esti-
variance, which explains why investigators often mates are not restricted to these two values.  In
ask whether normality assumptions can be made most cases the estimates are between 0 and 1,
for their data.  When a normality assumption which is interpreted to be the probability that the
cannot be made, it is sometimes possible to find a actual value is less than or equal to the threshold c. 
transformation that will make the data normal, or Performing this analysis for a number of different
nearly so.  For example, a transformation that is threshold values, c, can give the investigator infor-
often tried is the logarithmic transformation.  That mation about the probability distribution of con-
is, one simply takes the logarithm of all data values taminant values at a location, which may in turn be
(assuming they are > 0) and performs the geosta- used to obtain prediction intervals.  As discussed
tistical analysis on these transformed values rather above, such intervals may even be more valuable
than on the original data.  Prediction intervals than having only the optimal predictor and vari-
obtained using transformed values can be readily ance provided by the usual kriging analysis, partic-
converted to corresponding intervals on untrans- ularly if behavior of extremes may be of interest to
formed variables.  There are, however, subtleties the investigator.  The advantage of using indicator
that must be considered in back-transforming the kriging to obtain prediction intervals is that it is
kriging estimate and the kriging variance; these are not necessary to assume a distribution for the data,
discussed in more detail in Chapter 2. as in the discussion of normality above.

(8)  Indicator kriging.

nant concentration level which is of particular

dictor and the kriging variance for the indicators.  
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Chapter 2
Technical Aspects of Geostatistics

2-1.  General

a. This chapter provides technical aspects or
the necessary theoretical background for under-
standing kriging applications.  Emphasis will be
placed on presentation of the basic ideas; long
formulas or derivations are kept to a minimum. 
Statistical terms that are commonly used in
geostatistical applications will be highlighted with
bold text and briefly defined as they are intro-
duced; notation used in this ETL is also tabulated
in Appendix B.  The reader who wishes a more
thorough discussion of these fundamental concepts
may consult the references cited in Chapter 3.  
Previous exposure to engineering statistics at the
level of Devore (1987) and Ross (1987) would be
helpful in understanding some parts of this chap-
ter.   Readers with limited statistical experience
may wish to briefly scan this chapter and refer
back to it after reading the remaining chapters.

b. In section 2-2, regionalized random vari-
ables are discussed.  Regionalized random varia-
bles constitute the random process that is sampled
to obtain the observed data that are available for
analysis.  Basic ideas related to probability distri-
butions, means, variances, and correlation are
introduced.  The  variogram, which is the funda-
mental tool used in geostatistics to analyze spatial
correlation, is introduced in section 2-3.  In sec-
tion 2-4 how kriging is used to obtain the best
weights for spatial prediction is discussed, and
how the mean squared prediction error for these
predictions is computed is also shown.  Section 2-5
deals briefly with co-kriging, which is prediction of
one variable based not only on measurements of
that variable but on  measurements of other vari-
ables as well.  Finally,  section 2-6 shows how
kriging may be applied to determine not just opti-
mal spatial predictions but also probabilities
associated with various events, such as extreme
events that may be of importance in risk-based
analyses.

2-2.  Regionalized Random Variables

a. General.

(1)  Suppose the extent of groundwater con-
tamination of a particular pollutant over a given
study area is being determined.  To simplify the
presentation, all data are assumed to be distributed
over a two-dimensional region.  In three-
dimensional groundwater flow systems, one could
study the depth-averaged concentration of a pol-
lutant or the concentration of the pollutant in a par-
ticular horizontal stratum of the flow system.  Let
a vector x=(u,v) denote an arbitrary spatial loca-
tion in the study area.  Unless otherwise stated, it
will be assumed throughout the ETL that u is the
east-west coordinate and v is the north-south
coordinate (Figure 2-1).  Denote by z(x) a meas-
urement at location x, such as the concentration of
a pollutant.  The ultimate goal of an investigator
would be to determine z(x) for all locations in the
study area.  However, without explicit knowledge
of the flow and transport field, this goal cannot be
achieved.  Therefore, suppose, instead, that the
goal is to estimate the values of z(x) with a given
error tolerance.  In other situations, small estima-
tion error over some parts of the study area (for
instance, near a domestic water supply) may need
to be obtained, while allowing larger estimation
errors in other parts of the study area.  The theory
of regionalized random variables is designed to
accomplish these goals.  

(2)  In the regionalized random variable theory,
the true measurement z(x) is assumed to be the
value of a random variable Z(x).  Associating a
random variable Z(x) with a true measurement z(x)
is done for the purpose of characterizing the degree
of uncertainty in the quantity of interest at point x. 
If there is no actual measurement taken at x, then
the values taken on by Z(x) represent “potential”
measurements at x; that is, Z(x) represents possible
values that might be expected if a measurement
were taken at x.  Because there is uncertainty asso-
ciated with Z(x), it needs to be characterized by a
probability distribution, defined by 
where P denotes probability and c is any constant.
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Figure 2-1.  Diagrams showing A, hypothetical
study area; B, stationary covariance function; and
C, isotrophic covariance function

This distribution is a function of c, and, to be com-
pletely defined, needs to be known for all values of
c.  The distribution is used to make evaluations
such as:  suppose that we have no measurement of
concentration of a certain contaminant at x, but the
distribution is known, and a threshold value of
c = 8 mg/l is of interest.  If ,
then, if a measurement were made at x, there is a
60-percent chance of obtaining a value less than or
equal to 8 mg/l.  The distribution also may be used
to calculate other probabilities, such as the proba-
bility of obtaining a value in some specified
interval.

(3)  An important concept to keep in mind in
all geostatistical applications is the support of the
regionalized random variable.  The support of Z(x)
is  the in situ geometric unit represented by an
individual sample.  For example, in a soil contami-
nation study, sample Z(x) might represent the con-
centration of a contaminant in a vertical soil core
0.1 m in diameter and 1 m in length, and centered
at location x.  Thus, even though Z(x) is defined at
a particular point, it is representative of a volume
of soil.  Changing the support of Z(x) will usually
change its probability distribution.  Therefore, the
observations in a geostatistical analysis should all
have the same support.  The method called point,
or punctual, kriging, described in section 2-4, is
designed to predict values of Z(x) with the same
support as the sample data. 

(4)  A concept closely related to support is that
of estimation block, which is a geometric unit
larger than the support of a single observation, for
which a single representative value is desired.  For
example, in the above soil contamination study, it
may be necessary to estimate the average concen-
tration of the contaminant in a truckload of soil
excavated from a block 6 m long, 6 m wide, and
0.3 m thick.  Using a method called block kriging,
also described in section 2-4, the block average can
be predicted based on individual measurements.

(5)  Although the distribution of Z(x) com-
pletely characterizes Z(x) at any particular loca-
tion, this distribution indicates nothing about the
relations among the values of Z(x) at different
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locations, which is very important, because geo- is used to denote the mean, or expected value, of
statistics is based on using a measurement of a the bracketed term, in this case Z(x).  It is intui-
regionalized variable at one location to gain infor- tively helpful to think of the expectation as an
mation about values of the variable at another average.  In fact, if the distribution of Z(x)
location.  The notion of distribution of Z(x) at a assigned equal probability to a finite number of
single location is readily generalized to two or values, then the expectation of Z(x) would indeed
more locations.   For two locations, if we let x  and be the simple average of these numbers.  In geo-1

x  be two distinct locations, then the joint proba-2

bility distribution is defined to be the probability
P [Z (x ) # c , Z (x ) # c ] for any constants c  and1 1 2 2 1

c .  This latter probability means the probability2

that both Z (x ) # c  and Z (x ) # c .  If the vari-1 1 2 2

ables Z(x ) and Z(x ) are statistically independent1 2

of one another, then the joint probability distri-
bution can be obtained as the product of the indi-
vidual probability distributions,

(2-1)

However, in most applications, Z(x ) and Z(x ) will1 2

not be statistically independent and their joint
distribution cannot be obtained from the individual
distributions.  When this joint distribution descrip-
tion is applied to more than two locations, specifi-
cation of the full spatial distribution of Z would
require knowing the joint distribution of Z(x ), ...,1

Z(x ) for any set of n spatial locations and for anyn

n; however, except in very special cases, working
with the full set of distribution functions of Z(x) is
not feasible and is not done.

(6)  To simplify the problem even further, vari-
ous parameters of the distributions are usually
considered rather than dealing with the entire dis-
tributions.  The parameter most commonly used to
characterize a distribution is the mean, or, because
the mean in geostatistical applications depends on
the spatial variable x, the mean may be called the
spatial mean, or the drift.  In statistics, the mean is
referred to as the expectation (E) of the random
variable Z(x), and the symbol m is used in this
report to denote this expectation  Thus, 

(2-2)

statistics, however, Z(x) is usually assumed to take
on any value in a continuous range of possible
values, rather than being limited to a discrete set of
values.  In this case, calculus needs to be used to
define the expectation.  The following example
illustrates the difference between averages and
expectations.

b. Example 1.

(1)  An experiment consists of injecting a con-
servative tracer at a particular well in a steady-
state groundwater flow system and measuring the
concentration, Z (x), of the tracer in a neighboring1

well 24 hr later.  The tracer is then allowed to flush
from the system, and the experiment is repeated a
second time to obtain another concentration mea-
surement, Z (x), at the same location.  If this2

process is repeated n times, n concentration mea-
surements Z (x), Z (x), ..., Z (x) would be obtained,1 2 n

all at location x.  The average concentration level
at location x is

(2-3)

which would change depending on n and on the
actual values obtained for Z (x), Z (x), ..., Z (x). 1 2 n

However, in the limit as n increases, 
becomes closer and closer to the true mean, or
expected, concentration µ(x):

(2-4)

This theoretical limit is a constant value, or popu-
lation parameter, as opposed to , which is a
random variable, or a property of the particular
sample that is taken.  
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(2)  In example 1, no assumptions were needed (1)  If the scenario presented in example 1 is
concerning whether the mean changed with spatial again used, the sample variance S (x) of the n
location, because all sampling was done at one measurements could be computed as follows:
sampling location x.  In most HTRW applications,
the mean will probably change depending on the
sampling location.  In addition, usually only one
observation is available at any particular location.
Therefore some assumptions regarding the struc-
ture of µ(x) must be made.  For example, it is
sometimes appropriate to assume  is
constant for all x, in which case Z(x) is said to
have a stationary mean.  Data which have no
underlying trend such as hydraulic conductivity in
a homogeneous aquifer, for example, might be
assumed to have a constant mean.  If the mean is
constant, it makes sense to estimate it with the
sample average of n observations taken at different
spatial locations x , x , ..., x1 2 n

(2-5)

However, in contrast to example 1,  defined in
this way may not get closer to µ as n gets large. 
Because of the possible spatial correlation in the
data, the size of the sampling region must be large
in relation to the correlation length in order for 
to accurately estimate µ.

(3)  In addition to the mean of Z(x), its varia-
bility or dispersion is also of interest, and this
variability is most commonly measured by the
(spatial) variance, defined to be the mean of
squared deviations of Z(x) from µ(x) and denoted
by F (x).2

(2-6)

The (spatial) standard deviation F(x) is the
square root of the variance.  The following exam-
ple illustrates the difference between the popula-
tion variance, which has been defined above, and a
sample variance.

c. Example 2.

n
2

(2-7)

This number gives a measure of dispersion of the
Z (x) values from their sample mean .  The samplei

variance depends on n and on the particular values
observed for Z (x), Z (x), ..., Z (x).  However, in1 2 n

the limit as n increases, S (x) gets closer andn
2

closer to a constant value, which is denoted by
F (x).  In this case, F (x) is a population param-2 2

eter, and S  (x) is a random variable.n
2

(2)  The mean and variance can both be calcu-
lated from the probability distribution of Z(x). 
Again, in geostatistics, the relations among region-
alized variables at different locations are of
interest.  From the joint distribution of Z(x ) and1

Z(x ) the (spatial) covariance function,2

(2-8)

may be obtained.  This function has a key role in
geostatistical analyses.  It is a measure of associ-
ation between values obtained at point x  and those1

obtained at point x .  If values at these two spatial2

locations tend to be greater than average or less
than average at the same time, then the covariance
will be positive.  However, if the values vary in the
opposite direction (that is, one tends to be larger
than average when the other is less than average,
and vice versa), the covariance will be negative.

(3)  Because C(x ,x ) is an unknown population1 2

parameter, it too must be estimated using a sta-
tistic computed from sample data.  To make this
possible, it is often assumed that the covariance
function depends only on the distance between
points, which is defined as the lag h, and not on
their relative location or orientation,
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(2-9)

Under this assumption, C(h) can be estimated by
pooling all pairs of observations that are approxi-
mately h units apart and computing a sample
covariance function

(2-10)

where h  is the distance between x  and x  and theij i j

average is over all pairs of points such that h  isij

between h-)h and h+)h.  The distance h is called
the lag and )h is called the lag tolerance.  There
are more effective ways to estimate C(h) other than
using Equation 2-10; for example, see Isaaks and
Srivastava (1989).  However, because the empha-
sis in this ETL is on the variogram (to be defined
below) rather than the covariance function, we will
not need to use the estimated covariance function.

(4)  A covariance function is called stationary
if it does not depend on the origin of the coordinate
system, that is,

(2-11)

 for any given vector, b (Figure 2-1).  The covari-
ance function (Equation 2-9) is stationary because
changing the origin does not change the distance
between the points. Substituting x  = x  = x in1 2

Equation 2-9 yields

(2-12)

 which, combined with the definitions in Equa-
tions 2-6 and 2-8, becomes

(2-13)

Therefore, when Z(x) has a stationary covariance
function, the variance of Z(x) is constant for all x. 
The covariance function can then be standardized
by dividing it by the variance.  The resulting
dimensionless function of h is called the spatial
correlation function,

(2-14)

 The correlation function is a scale-independent
measure of linear association between values of Z
at different locations.  The spatial correlation is
always between -1 and +1, with a value of zero
indicating no linear association.

(5)  In addition to being stationary, the covari-
ance function in Equation 2-9 has another import-
ant property.  It is also isotropic, or omni-
directional, because it does not depend on the
direction between the two locations.  In many
HTRW applications, the correlation between
values of Z at two locations is a function of direc-
tion as well as lag.  For example, contaminant
concentrations in a groundwater flow system might
be more highly correlated along a transect in the
direction of flow than along a transect perpen-
dicular to the flow.  In that case, the covariance
function depends on both the lag h and the angle a
between locations,

(2-15)

Here, a is the angle measured counterclockwise
from the east direction (Figure 2-1).  In many geo-
statistical publications or computer packages, the
angle may be defined as clockwise from the north
direction, so care should be taken in defining the
appropriate angle in any application.  A covariance
function satisfying Equation 2-15 is called aniso-
tropic, or multi-directional.
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(2-16)

(2-18)

(6)  To summarize, the basic model frame- will adopt the variogram as the primary tool for
work that will be used throughout the ETL is the analyzing spatial dependence in the remainder of
following:  the value of a measurement z(x) (con- this ETL. 
centration, porosity, hydraulic head, and so on) at
location x of a two-dimensional region is the value b. As was the case with the covariance func-
of a regionalized random variable, Z(x), with mean tion, it is necessary to distinguish between the
µ(x) and stationary covariance function C(h,a). theoretical variogram, which is a population
Other assumptions may be added in the applica- parameter, and the sample variogram, which is an
tions sections to analyze specific data sets, but this estimator of the theoretical variogram obtained
framework will be the basic framework from
which many of the results will be derived.  In some
situations, the covariance stationarity assumption
may be relaxed, for instance, when using the linear
variogram described in the next section.

2-3.  Variograms

a. Regionalized random variables differ from
classical (ordinary least-squares) regression
models in that the residuals, defined as the devi-
ations of the regionalized random variable from its
mean and denoted by

are related to one another, whereas the residuals in
a regression model are generally assumed to be
independent.  Thus, in the regionalized random-
variable model, observed values of the residuals
from sampled locations contain valuable informa-
tion when predicting the value of Z(x) at unsam-
pled sites.  The relationship among the residuals
can be understood by examining the variogram,
which is a tool that is widely used in geostatistics
for modeling the degree of spatial dependence in a
regionalized random variable.  Although the vario-
gram is closely related to the covariance function,
there are some important differences between the
variogram and covariance function that will be
described below.  The covariance function, and
related correlation function, are more commonly
used in basic statistics courses than the variogram,
so many readers may be more familiar with the
former concepts.  However, the variogram is more
widely used in geostatistics, and because of this we 

from observed data.  The theoretical variogram
of a regionalized random variable, ((x  ,x ) is1 2

defined as one half of the variance of the difference
between residuals at locations x  and x :1 2

(2-17)

Because the residuals have been mean-centered, as
shown in Equation 2-16, they have a mean of zero. 
Therefore, using the well-known formula for the
variance of a random variable X

it is seen that Equation 2-17 is equivalent to

(2-19)

The theoretical variogram is always non-negative,
with a small value of g indicating that the residuals
at locations x  and x  tend to be close and a large1 2

value of 8 indicating that the residuals tend to be
different.  Equation 2-19 is sometimes called a
semi-variogram, because of the multiplication by
½, but will be referred to in this ETL as a
variogram.

c. It would be ideal to know the theoretical
variogram before taking observations, but unfortu-
nately, it must be estimated using sample data.  To
facilitate variogram estimation, it is usually
assumed in a similar manner to the covariance
function that ( depends only on the lag,
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(2-20)

or possibly, on the lag and angle between locations

(2-21)

(Figure 2-1).  Equation 2-20 is called an isotropic
variogram and Equation 2-21 is a directional
variogram at angle a. 

d. For the isotropic case, the sample, or
empirical, variogram is obtained by averaging the
square of all computed differences between resid-
uals separated by a given lag:

(2-22)

where, as before, h  is the distance between x  andij i

x .  For a given h as more and more points sepa-j

rated by distance h ± )h  are sampled and as )h
gets small, ( (h) should approach the theoretical^

variogram.  More detail on variogram estimation
will be presented in Chapter 4, including the
directional case.  In this section, it will be suffi-
cient to describe some general properties of iso-
tropic variograms that will be referred to numerous
times in the application sections to follow.

e. A plot of the sample variogram versus h
often has a considerable degree of scatter (Fig-
ure 2-2), which is especially evident if the sample
size n is small.  However, the points can usually be 

fitted by a smooth curve that represents a theoret-
ical variogram selected from a suite of possible
choices.  Usually, the theoretical variogram is
monotonically increasing, signifying that the far-
ther two observations are apart, the more their
residuals tend to differ, on average, from one
another.  Several properties common to many
theoretical variograms are shown in Figure 2-2.   If
the variogram either reaches or becomes asymp-
totic to a constant value as h increases, that value
is called the sill (Figure 2-2).  The distance  (value
of h) after which the variogram remains at or 
close to the sill is called the range.  Measurements
whose locations are farther apart than the range all
have the same degree of association.  Often, a
variogram will have a discontinuity at the origin,
signifying that even measurements very close
together are not identical.  Such variation in the
measurements at small scales is called the nugget
effect.  The size of the discontinuity is called the
nugget.  Although the nugget effect is sometimes
confused with measurement error, there is a subtle
difference between these two concepts that will be
explained in section 2-4.  A simple monotonic
function is usually selected to approximate the
variogram.  Four such functions that are often used
in practice are:

the exponential variogram (parameters:  sill, s >
0; nugget, 0 < g < s; range, r > 0)

(2-23)

the spherical variogram (parameters:  sill, s > 0;
nugget, 0 < g < s; range, r > 0)

(2-24)
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Figure 2-2.  Diagram showing variogram and features

the Gaussian variogram (parameters:  sill, s > 0;
nugget, 0 < g < s; range, r > 0)

(2-25)

and, the linear variogram (parameters:  nugget,
g > 0; slope, b > 0)

(2-26)

f. Although there are many other models that
are used for variograms (Journel and Huijbregts
1978), these four are the most commonly used and
are shown in Figure 2-3.  The exponential, spheri-
cal, and Gaussian models are similar in that they
all have a sill and a range.  However, they have
different shapes near zero lag (h=0) that, as will be
discussed in Chapter  4, result in significant differ-
ences in the prediction results using the three
models.  The linear model is quite different from
the other three, in that it does not reach a sill, but
increases linearly without.  This fact will have
important implications on the prediction results
using a  linear variogram.  Because the squared
differences between residuals tend to increase 

without bound as the lag increases, a regionalized
random variable with a linear variogram will have
ever-increasing variability about its mean as the
size of the sampling region is increased.  In appli-
cations involving the linear variogram, the vario-
gram is usually truncated at a sill corresponding to
the value of the variogram at maximum lag h .max

g. Before closing this section, it will be use-
ful to highlight some similarities and contrasts
between the covariance function and the vario-
gram. Although the variogram is commonly used
in a geostatistical analysis, it is sometimes easier to
gain an intuitive understanding of the methodology
using the covariance function, or equivalently, the
spatial variance and the correlation function. 
When Z(x) has a stationary, isotropic covariance
function (Equation 2-9), there is a one-to-one
correspondence between the variogram and the
covariance function, namely 

(2-27)

As long as C(h) approaches zero as h increases (a
minor technicality that can always be assumed in
practice), then, as indicated by Equation 2-27, the
variogram reaches a sill and the sill equals C(0). 
Therefore, when dealing with a covariance-
stationary regionalized random variable, the vario-
gram and the spatial covariance function contain
the same information as one another.  By factoring
out C(0)=s from Equation 2-27 and using Equa-
tion 2-14, the relationship between the spatial
correlation function and the variogram can be
obtained

(2-28)

From Equation 2-28, it is evident that high values
of ((h) (i.e., close to s) signify low values of D(h). 
In fact, D(h) = 0 whenever ((h) = s, indicating that
observations whose locations are farther apart than
the range are uncorrelated.  As h gets small, a
nugget in ((h) is reflected in a correlation that is
less than 1
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Figure 2-3.  Theoretical variograms showing A, exponential; B, spherical; C, Gaussian; and D, linear
models

(2-29)

Therefore, the larger g is in relation to s, the less
correlated nearby observations are.  The case when
g=s, called a pure nugget variogram, results in
D(h)=0 for all h>0.  In that case, neighboring
observations are uncorrelated no matter how
closely they are spaced. 

h. Occasionally, ((h) may not reach a finite
sill, as in the linear variogram Equation 2-26.  In
that case, it is not possible to define a correlation
function as in Equation 2-28.  The corresponding
regionalized random variable is said to be intrinsi-
cally stationary (Journel and Huijbregts 1978),
which is more general than covariance stationarity. 
The theory behind intrinsically stationary vario-
grams will not be presented in this ETL.  As long
as a “pseudo-range” h  is defined, all of themax

computations described below can be generalized.

2-4.   Kriging

a. General.

(1)  Given a regionalized random variable Z(x)
with a known theoretical variogram, the question
is:  how can the value of Z(x) be predicted at an
arbitrary location, based on measurements taken at
other locations?  Suppose that Z is measured at n
specified locations:  Z(x ), ..., Z(x ).  For example,1 n

Z could correspond to hydraulic conductivity and
the locations might correspond to n preexisting
wells in an aquifer.  Let a new location be given by
x =(u ,v ) and denote the ith measurement location0 0 0

by x =(u ,v ).  Suppose that, based on prior knowl-i i i

edge of the geology, there are no prevailing trends
in hydraulic conductivity, so the mean of Z(x) is
assumed to be constant over the entire region:

(2-30)
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(2)  Suppose the investigator wants to predict Because the variogram is the same for all h>0 and
the value of Z(x ) by using a linear predictor,0

Z (x ), which is defined as a weighted linear combi-^
0

nation of the measured data

(2-31)

where w  is the weight assigned to Z(x ).  To deter-i i

mine specific values for the weights, some criteria
need to be specified for Ẑ (x ) to be a good pre-0

dictor of Z(x ).  The first criterion is that Z0
^ (x ) be0

an unbiased predictor of Z(x ), which is expres-0

sed as

(2-32)

(3)  An unbiased predictor will neither consis-
tently overpredict nor underpredict Z(x ) because0

the statistical expectation of the prediction errors is
zero.  The second criterion for a good predictor is
that it have small prediction variance, defined by

(2-33)

(4)  The smaller the prediction variance, the
closer Ẑ (x ) will be (on average) to the true value0

Z(x ).  The geostatistical method of kriging deals0

with computing the best linear unbiased pre-
dictor of Z(x ), which is the linear unbiased pre-0

dictor (Equations 2-31 and 2-32) with the smallest
possible prediction variance (Equation 2-33).

(5)  The form of the best linear unbiased pre-
dictor will depend on the mean of Z(x).  For exam-
ple, if Z(x) has a constant mean (Equation 2-30)
and a pure nugget variogram [((h)=s for all h>0],
the best linear unbiased predictor of Z(x ) will0

simply be the average of the measured data

(2-34)

there is no trend in the data, there is no reason to
favor any of the measurements over any of the
other measurements.  Therefore, the weights are all
the same.  Ordinary kriging, which is discussed in
section 2-4b, deals with the constant-mean model
(assumption in Equation 2-30) in which the vari-
ogram is not a pure nugget variogram.  The
weights of the best linear unbiased predictor will
reflect the information in the variogram and will
result in an improved predictor over the sample
mean.  In section 2-4c, universal kriging, which is
the extension of ordinary kriging to the case of a
nonconstant mean, is discussed.  Universal kriging
is a very powerful tool that can be used to combine
regression models and spatial prediction into one
unifying theory.  Other, more specialized types of
kriging that will be discussed in this section are
indicator kriging (section 2-6c), block kriging (sec-
tion 2-4d), and co-kriging (section 2-5).

(6)  Before giving the kriging equations, one
final note is in order.  There is a prediction tech-
nique in geostatistics known as simple kriging,
which deals with best linear unbiased prediction in
the case when the mean of Z(x) is fixed and known. 
Simple kriging is not discussed in this ETL,
because, in most applications, the mean is not
known and has to be estimated.

b. Ordinary kriging.

(1)  General.

(a)  Let Z(x)be a regionalized random variable
with constant mean (Equation 2-30) and isotropic
variogram (Equation 2-20).  Also, assume that the
variogram reaches a sill so that the variance of
Z(x) is C(0)=s, and the correlation function is
given by Equation 2-28.  Although the prediction
equations can be expressed in terms of the vario-
gram, they will be defined here in terms of the sill
(variance) and the correlation function.

(b)  Consider linear unbiased predictors of the
form of Equation 2-31 with the condition in Equa-
tion 2-32 holding.  The unbiased condition is
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(2-39a)

(2-39b)

(2-39c)

(2-40a)

(2-40b)

(2-41)

equivalent to  for any µ, which holds

if and only if .  Therefore, all linear

unbiased estimators need to have weights that sum
to one.  There are many sets of weights that satisfy
this condition, including the set with all the weights
equal to 1/n, as in the sample mean, Equation
2-34.  However, the unique set of weights that
minimize the prediction variance (Equation 2-33)
can be shown to satisfy the following set of n+1
ordinary kriging equations (Chapter 12, Isaaks
and Srivastava (1989)):

(2-35a)

(2-35b)

where D  = D(h ) is the correlation between obser-ij ij

vations i and j, h  is the distance between locationsij

i and j, and 8 is a coefficient resulting from the
constrained optimization.  Furthermore, the
resulting ordinary kriging variance is

(2-36)

(c) The system of Equations 2-35a and 2-35b
can easily be solved for the w 's and 8, after whichi

the kriging variance can be obtained from Equa-
tion 2-36.  Note that the ordinary kriging variance
changes depending on the prediction location x ,0

even though the variance of Z(x ) itself (Equa-0

tion 2-6) is constant for all x .0

(2)  Example 1.

(a) Let the mean of Z(x) satisfy Equation 2-30,
and suppose that the residual Z*(x) (Equa-
tion 2-16) has an isotropic exponential variogram
(Equation 2-23).  Consider predicting Z(x ) based0

on n=2 measurements Z(x ) and Z(x ), where the1 2

three locations (x , x , and x ) are distinct.  Using0 1 2

Equations 2-23 and 2-28, note that the correlation
function is 

(2-37)

For illustrative purposes, suppose that 

(2-38)

where p is a fixed proportion.  The quantity p is
sometimes referred to as a relative nugget.

(b)  The ordinary kriging Equations 2-35a and
2-35b are given by

These three equations have three unknowns:  w ,1

w , and 8; the solution is2

and
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The resulting kriging variance is case, the kriging variance will increase to reflect

(2-42)

Although there are only three sample locations in
this example (two actual and one potential), it indi-
cates several properties of best linear unbiased pre-
diction that hold in general.  For example,

(c)    Effect of sill.  The kriging weights
depend on s only through the relative nugget p. 
However, the kriging variance is directly propor-
tional to s.  The sill is called a scaling parameter
because scaling each measurement by a constant c
has the effect of scaling s by c .  When the relative2

nugget is allowed to vary so that s and g can
change independently, the effect of s is somewhat
more complicated.

(d)  Effect of nugget.  Increasing p has the
effect of drawing each of the weights closer to 1/2. 
In fact, as p approaches 1, both weights will equal
1/2.  The larger g is in relation to s, the more
small-scale variability there is in the data and the
less important the correlation between neighboring
locations becomes.  The increased small-scale
variability also causes an increase in the kriging
variance.

(e)  Effect of correlations.  If Z(x ) is more0

highly correlated with Z(x ) than with Z(x ), then1 2

w  will be larger than w , indicating that the mea-1 2

surement at the first location has more predictive
information than the measurement at the second
location.  Also, correlation in the data always
decreases the kriging variance compared to the
variance with uncorrelated data.

(f)  Effect of data clumping.  If Z(x ) and1

Z(x ) are highly correlated, as indicated by D2 12

being close to 1, then the two measurements con-
tain much of the same information.  Two situations
can occur:  D  = D , in which case the weights are10 20

both equal, or D  > D  [D  < D ], in which case10 20 10 20

w  will be much larger [smaller] than w .  In either1 2

the redundant information in the two measure-
ments.  Automatic adjustment of the kriging
weights and kriging variance to account for data
clumping is an important property of the kriging
predictor.

(3)  Example 2 (Nugget effect versus measure-
ment error).

(a)  In example 1, all three locations x , x , and0 1

x , were assumed to be distinct.  When a prediction2

location happens to coincide with a measurement
location, there is an important distinction that
needs to be made between a true nugget effect and
a measurement error.  Suppose that in example 1,
x  and x  are the same.  If there is only small-scale0 1

variability, but no measurement error, then
repeated measurements at the same location should
be identical, that is, D  = 1.  In this case, the krig-10

ing equations result in w  = 1, w  = 0, and 8 = 01 2

and in a kriging variance of zero.  That is, Z(x ) is1

a perfect predictor of Z(x ).  This property, called0

exact interpolation, is a property of kriging when
the data are assumed to contain no measurement
errors.  However, suppose instead that the nugget
is interpreted as measurement error rather than
small-scale variability.  In that case, repeated
measurements at the same location would not be
perfectly correlated, but rather, D  = 1-g/s.  10

(b)  Substituting this correlation into the krig-
ing equations and solving the equations results in a
predictor that does not exactly interpolate the data,
but instead smooths the measured data to account
for the measurement error.  In this ETL, prediction
locations are assumed not to coincide with mea-
surement locations, in which case no distinction
needs to be made between nugget and measurement
error.

c. Universal kriging.

(1)  Universal kriging is an extension of ordi-
nary kriging, that, due to the fact that environ-
mental data often contain drift, can be important in
HTRW site investigations.  Universal kriging
addresses the case of a nonconstant mean µ(x). 
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(2-44)

(2-45)

Generally, the mean is assumed to have a func-
tional dependence on spatial location of the form

(2-43)

where the f (u,v)'s are known deterministic func-j

tions of x=(u,v) (that is, these functions serve as
independent variables) and the $ ’s are regressionj

coefficients to be estimated from the data.  For
example, suppose Z(x) is hydraulic head in an
aquifer.  If the flow is in a steady state, it might be
reasonable to assume, in a given case, that the
mean of Z(x) has a unidirectional groundwater
gradient that is given by

In this example, there are two independent
variables:

and two regression coefficients ($  and $ ).  The1 2

mean can include other independent variables
besides simple algebraic functions of u and v.  For
example, if the aquifer is not of uniform thickness,
an independent variable that involves the aquifer
thickness at location (u,v) could be included.

(2)  The form assumed for the mean in Equa-
tion 2-43 is also generally used in standard linear
regression analysis.  In regression, ordinary least-
squares is generally used to solve for the coeffi-
cients; when this is done, it is assumed that the
residuals are independent and identically distribu-
ted.  Universal kriging is an extension of ordinary
least-squares regression that allows for spatially
correlated residuals.  Assuming that Z(x) is a
regionalized random variable with a mean as in
Equation 2-43 and residual correlation function as
in Equation 2-28, the best linear unbiased predictor
(Equation 2-10) can be obtained from the follow-
ing n+p equations, called the universal kriging
equations (Journel and Huijbregts 1978):

 (2-46a)

(2-46b)

where, in contrast to the ordinary kriging equa-
tions (2-35a and b), there are now p coefficients
8 , ..., 8  resulting from the unbiased condition on1 p

the predictor.  The first term in the mean (Equa-
tion 2-43) will usually be a constant, or intercept,
for which f (x) = 1.  Therefore, the universal krig-1

ing model includes ordinary kriging as a special
case.  The universal kriging variance is given by

(2-47)

These equations can be easily solved to obtain
universal kriging predictors and kriging variances
for any desired location.  The estimated trend
surface does not actually need to be computed to
obtain the universal kriging predictor.  If a particu-
lar application needs an estimate of the trend sur-
face, then generalized least-squares regression can
be used to estimate the coefficients ($ ’s) in thej

regression equation.

d. Block kriging.

(1)  Up to this point, the problem of predicting
the value of a regionalized random variable at a
given location in the region over which the variable
is defined has been considered.  Implicit in this
analysis is the assumption that the support of the
variable being predicted is defined in exactly the
same way as the variables that make up the mea-
surements.  However, there may be applications
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where it is necessary to estimate the average value kriging variance is not as simple, because the
of Z over an estimation block of much larger area individual kriging estimates are not independent of
than is represented by an individual sample.  For one another.  There are simple modifications to the
example, an estimate of the average concentration kriging equations discussed in sections 2-4b and
of a contaminant over an entire aquifer based on 2-4c that can be used to directly compute the krig-
point measurements at various locations might be ing estimate of Z , along with its kriging variance
needed.  In other applications, an estimate of the (Chapter 13, Isaaks and Srivastava (1989)).  The
average concentration of soil contaminant in daily equations are not presented in this ETL.  The com-
excavation volumes that are much larger than the puter packages described in the next section can be
volume of an individual sample may be needed. used to compute block kriging estimates.  In gen-
Let Z  be the average value of Z(x) over a particu- eral, kriged values of block averages are lessB

lar block B, variable than kriged values at single locations. 

(2-48)

where x , i=1,...,m, denotes m prediction locations0i

in block B.  The object is to predict this average
rather than the regionalized variable at a single
location.  In many applications, the locations x0i

might correspond to nodes of a regular grid or
finite- element nodes in a groundwater model. 
Results of the block kriging are dependent on m
and on the placement of the prediction locations. 
Selecting a large number of locations in block B,
where each location has approximately the same
representative area, is the best approach (Chap-
ter 13, Isaaks and Srivastava (1989).

(2)  The objective of block kriging is to obtain
the best linear unbiased predictor of Z  and anB

estimate of the block kriging variance based on the
measurements.  The model for Z(x) can be the
constant-mean model (Equation 2-30) assumed for
ordinary kriging or the more general linear regres-
sion model (Equation 2-43) assumed for universal
kriging.  In either case, the predicted value of ZB

coincides with the average of the predicted values
of the individual measurements in the block; that is 

(2-49)

In this equation, the individual predicted values are
obtained from either the ordinary or universal krig-
ing equations.  However, computation of the block 

B

Consequently, the blocked kriging variance tends
to be smaller than the kriging variance at a single
location.

2-5.  Co-kriging

a. Kriging as discussed so far provides a way
of predicting values of a regionalized variable Z(x)
at a location x  based on measurements of the same0

variable at locations x , x , ..., x .  In some situa-1 2 n

tions, however, there will be available measure-
ments not only of Z(x), but also of one or more
other variables that can be used to improve predic-
tions of Z(x ).  The variable Z(x) will be called the0

primary variable, because it is the one to be pre-
dicted, and the other variables will be called
secondary variables.  Co-kriging is the technique
that allows the use of the information contained in
secondary variables in the prediction of a primary
variable.  As an example, suppose that Z(x) is a
regionalized variable representing the hexavalent
chromium concentration, a relatively difficult
determination, and that hexavalent chromium con-
centration needs to be predicted at a location x0

based on measurements of hexavalent chromium at
other locations, but there are also measurements of
a second relatively easily determined contaminant,
for example lead, that tend to be correlated with
hexavalent chromium concentration and these data
are to be used as well.  Denote the second variable
lead by a regionalized variable W(x), and assume
that measurements have been made on W at m
locations x'  x' , ..., x' .  The co-kriging predictor1 2 m

of Z(x)  is then0
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(2-50)

This is a straightforward extension of the kriging
predictor in Equation 2-31.  Analogous to kriging,
co-kriging produces the weights w  and w'  so thati j

the resulting predictor is the best linear unbiased
predictor.  Also, as with kriging, co-kriging
requires modeling of the variogram for Z, but
co-kriging presents the investigator with the addi-
tional necessity of modeling the variogram of W
and the cross variogram for Z and W.  The opti-
mal weights are then expressed in terms of all
these variogram properties.  More than one sec-
ondary variable may be included in the co-kriging
predictor, and theory has been developed for
co-kriging in the presence of drift (universal
co-kriging) and block co-kriging.  Details are not
included in this ETL, but the interested reader may
refer to Isaaks and Srivastava (1989) and Deutsch
and Journel (1992) for more discussion and cita-
tion of other references.

b. One situation in which co-kriging might be
useful is when the primary variable is undersam-
pled, so any additional information, such as that
given by secondary variables, would be helpful. 
However, although co-kriging can be a useful tool,
joint modeling of several variables tends to be
demanding in terms of data and computational
requirements.  Thus, undersampling of the primary
variable may present problems for co-kriging as
well as for one-variable kriging.  Also, unless the
primary variable of interest is highly correlated
with the secondary variable(s), the weights
assigned to the secondary variable(s) are often
small, with the result that the effort needed to
include the additional variable(s) may not be
worthwhile.  For these reasons, co-kriging tends
not to be used extensively in practice.  

c. Although co-kriging is similar to universal
kriging, in that both techniques use extra variables
to help predict Z(x), there is an important
distinction between the two techniques.  In

universal kriging, the independent variables in
Equation 2-43 need to be known with certainty at
the prediction location x .  For example, aquifer0

thickness might be an independent variable in
predicting aquifer head if it can easily be
determined at any location.  However, aquifer
thickness may need to be considered a secondary
variable in a co-kriging procedure if it is only
known at a few selected points in the aquifer.

2-6.  Using Kriging to Assess Risk

a. General.

(1)  The kriging predictor of Z(x ) has certain0

desirable properties with respect to how close it is
to the actual value of Z(x ), it is unbiased and has0

smallest variance among all linear predictors.  On
the average, or in an expected sense, the predicted
value will be near the actual value.  When possi-
ble, however, the investigator would like to go fur-
ther in specifying the relationship between the
predicted and observed values.  Ideally, the investi-
gator would like to make probability statements. 
For example, if Z(x ) is concentration of a contam-0

inant, the investigator might like to be 95 percent
certain that the true concentration is within
0.05 ug/R of the predicted concentration.  In other
situations, the probability that the actual concen-
tration exceeds a given target value might need to
be estimated.  Knowledge of the entire distribution
function of Z(x), as opposed to knowledge of only
its mean and variogram, can be used for risk-
qualified inferences in situations when extremes
might be of more interest than averages.

(2)  Introduction of the concept of a condi-
tional probability distribution function of the
regionalized variable Z(x) is appropriate at this
point.  This concept will also be used in Chapter 7
when conditional simulation is discussed.  The
conditional probability distribution function has a
definition much like that of the probability distri-
bution function in section 2-2, except the proba-
bility that Z(x) # c is computed “conditional on,”
or “given,” information at other spatial locations. 
The interest in geostatistics is to make predictions
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 at a location x  using information at measurement (2)  To illustrate quantile estimation, suppose0

locations x , x , ..., x , so, in terms of conditional that contaminant concentrations are being studied1 2 n

distributions, interest focuses on P [Z (x ) # c * Z and the concentration that has only a 1-percent0

(x ), Z (x ), ..., Z(x ) ].  The vertical bar denotes the chance of being exceeded at location x  needs to be1 2 n

conditioning and is read “given.”  This conditional determined.  The appropriate (one-sided) value
probability distribution needs to be determined to from a normal table is 2.33, so the desired estimate
make probability statements about the regionalized is 
variable at location x .  Also, conditional mean0

and conditional variance can be defined in the
present context in the same way that mean and possible to find a transformation, Y(x)=T(Z(x)),
variance for distribution functions were defined in such that Y(x) is approximately Gaussian. When a
section 2-2. transformation is made, the kriging analysis is per-

(3)  Section 2-6b contains methods for using inverse transformation may be applied to obtain
kriging output to obtain prediction intervals or prediction intervals for the original data.  For
quantiles when the regionalized random variable is example, the most common transformation is the
either normally distributed or can be transformed
to a near-normal distribution.  Section 2-6c dis-
cusses indicator kriging, which is a nonparametric
method for obtaining quantiles when data cannot
be transformed adequately to a normal distribution. 

b. Normal distributions and transformations.

(1)  For prediction at a location x , a kriging0

analysis produces the predictor Ẑ (x ) and the asso-0

ciated kriging variance .  If more informa-
tive probability assessments are to be made, the
ideal situation is when Z(x) can be assumed to be a
Gaussian, or normal, process, which means that
[Z(x ),..., Z(x )] has a joint normal probability dis-1 n

tribution for any set of n locations and any value
of n.  In this case, the conditional probability dis-
tribution of Z(x ) given the n observations is a nor-0

mal distribution with conditional mean equal to the
kriging predictor Ẑ (x ) and conditional variance0

equal to the kriging variance .  This normal
distribution can be used to obtain a prediction normal kriging, and more generally trans- normal
interval  for Z(x ) (conditional on the measured0

data).  For example, from a table of the normal
distribution, a value of 1.96 corresponding to a
0.95 (two-sided) probability can be obtained. 
Then the assertion that there is a 95-percent chance
that Z(x ) will be in the 95-percent prediction inter-0

val 
can be made.  Knowing this interval is much more
useful than simply knowing the kriging predictor
and variance. 

0

(3)  Even if Z(x) is not Gaussian, it is often

formed using the transformed data Y(x), and the

(natural) logarithmic transformation, in which
Y(x)=1n[Z(x)].  A 95-percent prediction interval
for Z(x) is then {exp [Y(x ) - 1.96 F (x )], exp [Y^

0 k 0
^

(x ) + 1.96 F (x )]}.  As long as the transformation0 k 0

is a one-to-one function such as a logarithmic
transform, prediction intervals for the original data
can be obtained by simply back-transforming pre-
diction intervals for the transformed data. 

(4)  Although it is a simple matter to obtain
prediction intervals and probabilities using simple
back-transformation, it is more difficult to obtain a
predictor of the untransformed data that is both
unbiased and optimal in some sense.  For example,
in the case of a logarithmic transformation, a
kriging analysis using the transformed data yields
a predictor Y (x ), which is the best linear unbi-^

0

ased predictor of Y (x ).  However, the back-0

transformed value Z (x ) = exp [Y (x )] does not^
0 0

^

possess these same optimality properties as a pre-
dictor of Yx .  The methodology known as log-0

kriging, has been developed to obtain predictors in
this setting (Journel and Huijbregts 1978), but
because of the complexity involved in these pro-
cedures, they are not usually used by practitioners.
If a predicted value corresponding to Z(x ) needs to0

be obtained for purposes of contour plotting, the
kriging predictions Y (x ) may be back-transformed^

0

and plotted, as long as the investigator realizes that
such values do not have the usual kriging opti-
mality properties.
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c. Indicator kriging. is an estimate of the conditional probability distri-

(1)  There may be situations when a transfor- This analysis may be performed for a range of
mation that makes Z(x) approximately normal values of c, and by doing this the entire distribution
cannot be easily determined. In such situations, function can be estimated.  This estimate of the
indicator kriging can be used to make inferences
about the probability distribution of Z(x).  Because
no distributional assumptions are made, this tech-
nique is known as a nonparametric statistical
procedure.  An example of indicator kriging is
included in Chapter 5, and a paper by Journel
(1988) is a good reference for additional informa-
tion about indicator kriging.

(2)  To perform indicator kriging, a special
transformation, known as an indicator transforma-
tion, is applied to Z(x):

(2-51)

If, as in the usual kriging scenario, the data set at
hand consists of measurements of the regionalized
variable Z(x) at n locations, c needs to be fixed
first, and then the indicator transformation is
applied by replacing values that are less than or
equal to c with 1 and values that are greater than c
with 0.  The variogram and kriging analysis is then
performed using these 0’s and 1’s rather than the
raw data. 

(3)  Kriging predictors using the indicator data
will be equal to their observed values of 0 or 1 at
the measurement locations x , i=1,...,n.  However,i

at locations different from the measurement loca-
tions, predictions may be between 0 and 1.  In
interpreting these values, the power of indicator
kriging becomes apparent.  A predicted value at x  0

bution . 

distribution function can be used in the same man-
ner discussed above to obtain prediction intervals
or estimates of quantiles.  For example, to estimate
the value that has a 1-percent chance of being
exceeded at location x , the value of c for which the0

kriged indicator prediction is 0.99 at that location
is determined.

(4)  One advantage of indicator kriging is that
the indicator variogram is robust with respect to
extreme outliers in the data because no matter how
large (or small) Z(x) is, the indicator variable is
either 0 or 1.  Indicator variables may also be used
in the context of block kriging.  For example, a
spatial average of I(x,c) over a block B equals the
fraction of block B for which Z(x) is less than c.
Another advantage of indicator kriging is that it
can be used when some data are censored.

(5)  Despite the relative ease of implementa-
tion, there are several drawbacks to indicator
kriging, and investigators may wish to use this
technique only when other methods, such as
normality transformations, produce unacceptable
results.  For example, the kriged values of I(x,c)
may be less than 0 or larger than 1.  Also, the
kriged prediction for I(x,c ) may be larger than the1

kriged prediction for I(x,c ) even if c <c , which is2 1 2

not compatible with a valid probability distribu-
tion.  There are several more advanced techniques
for dealing with these problems (Chapter 18,
Isaaks and Srivastava (1989); however, they are
beyond the scope of this ETL.
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Chapter 3
Geostatistical Resources and Tools

Since the mid-1970’s, a myriad of texts and arti-
cles have been published that are either totally
dedicated to geostatistical methods or discuss
geostatistics in detail.  Numerous computer pro-
grams and software packages on geostatistics and
kriging accompany many of these texts.  Although
only a few of these resources will be briefly
described in this ETL, their lists of references can
provide the interested reader a path to other geo-
statistical topics or software not specifically
covered in the resources.

3-1.  Texts on Geostatistics

a. The geostatistical texts presented in this
section can be classified into two broad categories:
instructional texts or reference texts.  For one who
is delving into geostatistics for the first time,
Clark’s (1979) book is a starting point.  Simple
explanations of the basic kriging techniques are
applied to an example data set.  A more advanced
treatment of the kriging techniques is described by
Isaaks and Srivastava (1989).  This textbook pre-
sents a detailed discussion of many of the back-
ground statistical tools and concepts needed in
geostatistical applications, including histograms
and distributions (univariate and bivariate),
sampling, correlation, and spatial continuity.  The
text also discusses how to treat the subtleties of
kriging using three data sets as examples.  As well
as being instructional, the book also can be used as
a reference.  

b. Texts by Cressie (1991) and Journel and
Huijbregts (1978) describe the tools of geostatis-
tics, but also include a comprehensive theoretical
background on the techniques.  Cressie’s (1991)
text is a treatment of spatial processes in general
and reviews a wide range of statistical techniques
in the analysis and stochastic modeling of spatial
data.  There is a four-chapter section on geosta-
tistics, with a complete discussion of variogram
estimation, kriging (including universal kriging),

intrinsic random functions, and comparisons of
kriging to other spatial prediction techniques.  The
text is written from a statistician’s point of view
and is, in places, written at a fairly high level
mathematically.  It nevertheless contains numerous
examples and illustrations using real-world data. 
Journel and Huijbregts (1978) maintain a mining-
geological perspective.  Two other texts written by
statisticians that present general treatments of spa-
tial processes, but that lack detailed discussions of
kriging, are Cliff and Ord (1981) and Ripley
(1981).

c. David’s (1977) text was the first extensive
discussion of geostatistics and kriging in mining
applications, and the discussion is presented from a
practitioner’s viewpoint.  Its value as reference
material derives from the many specific mining
applications and results.  A broad statistics text
with a bent toward geological applications (Davis
(1986), serves as a reference for standard statisti-
cal procedures needed in geological applications of
geostatistics.  A book by Bras and Rodriguez-
Itrube (1985) that discusses a range of techniques
for stochastic modeling in the field of hydrology
includes a chapter on applications of kriging. 
There is a fairly complete mathematical develop-
ment of kriging with details of an application to
predict mean areal precipitation.  In a paper pre-
pared for the U.S. Environmental Protection
Agency, Journel (1993) discusses geostatistics as it
relates to environmental science.  Finally, Olea
(1991) presents a useful glossary of geostatistical
terms.

3-2.  Useful Journals

The journal Mathematical Geology by the Inter-
national Association for Mathematical Geologists
reports new developments in the theory and appli-
cation of kriging.  Although many of the articles
present new applications of kriging tools, many
also are dedicated to the derivation of statistical
properties of the variogram, kriging estimation,
and cross-validation results.  Journals such as
Water Resources Research, published by the
American Geophysical Union, and Groundwater,



ETL 1110-1-175
30 Jun 97

3-2

published by the Association of Groundwater c. The geostatistical environmental assess-
Scientists and Engineers, contain articles describ- ment software know as GEO-EAS (Englund and
ing special applications of kriging techniques in the Sparks 1991) also is an interactive, menu-driven
environmental arena.  Water Resources Research kriging software package for performing two-
tends to contain articles that are highly theoretical. dimensional kriging.  It has no direct provisions for
Other journals that may contain information universal kriging (Table 3-1).  GEO-EAS does
addressing geostatistics are the Journal of Envi- have an advantage over STATPAC in its enhanced
ronmental Engineering, published by the Ameri- graphics capabilities, which are useful in the inter-
can Society of Civil Engineers; Stochastic active fitting of theoretical variograms to sample
Hydrology and Hydraulics, published by Springer variogram points.  In addition, in the computation
International, and the North American Council on of the sample variogram points, GEO-EAS allows
Geostatistics, published by the Colorado School of for variable bin sizes, the use of which will be fur-
Mines. ther discussed in Chapter 4.

3-3.  Software

a. The geostatistics software described in this some types of work stations.  The kriging routines
section is limited to a few readily available public in STATPAC have not been adapted to work
domain packages that are executable at least on the stations.
DOS and sometimes on the UNIX platforms. 
There are several commercial packages that are e. A third software package, the geostatistical
being marketed, but these will not be reviewed in software library known as GSLIB (Deutsch and
this ETL.  It is beyond the scope of this ETL to Journel 1992), is a suite of programs developed
acquire and evaluate commercial packages; how- over the years at Stanford University, Stanford,
ever, a matrix-like table (Table 3-1) has been CA.  It is presented as a collection of routines that
included.  The table addresses each of the software are machine-independent (Table 3-1) and are
packages described in this ETL and also may serve intended to be used as a modular concept.  The
as a reference guide to other software packages. package is distributed as a suite of FORTRAN

b. Some of the earliest interactive kriging GSLIB requires a relatively high level of familiar-
software offered as a package was developed by ity with geostatistics for its efficient use.  As in the
Grundy and Miesch (1987).  Overall, this general previous two software packages, GSLIB handles
statistics package (STATPAC) contains a series of variogram analysis and kriging techniques
programs that can handle two-dimensional kriging, (Table 3-1).  Two of its primary advantages over
including universal kriging.  The package has the other two packages are its simulation tech-
capabilities for data transformations, variogram niques and ability to analyze three-dimensional
analyses, cross-validation, and univariate statistics data sets.  Such techniques are useful especially in
(Table 3-1).  Graphics in the package are limited estimating potential extreme outcomes in a geosta-
to simple line-printer plots of the sample vario- tistical analysis.  
gram points and data maps.  The menu-driven
package includes a tutorial using all of the kriging f. The Department of Defense Groundwater
routines.  The package is distributed with not all, Modeling System (GMS) is a fourth software
but most source codes and, therefore, can be package that has kriging capabilities.  GMS is a
modified by the user if desired.  All two- windows-based integrated modeling environment
dimensional kriging routines can be executed from for site characterization, groundwater flow and
the command line, which provides users with the transport modeling, and visualization of results. 
opportunity for batch processing. The GSLIB software has been implemented within

 d. STATPAC and GEO-EAS were originally
developed for the personal computer.  Since then,
versions of GEO-EAS have been developed for

source codes that need to be compiled.  Use of
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GMS to facilitate two- and three-dimensional g. A final note concerning geostatistical soft-
kriging and interactive variogram modeling.  GMS ware and literature is that there can be differences
also provides comprehensive visualization tech- in  jargon or notation.  These differences may
niques as well as other interpolation techniques cause some initial confusion if users or readers do
that can be used as alternatives to kriging.  The not pay careful attention to the jargon or notation. 
GMS system was developed for the Department of For  example, some authors may wish to use the
Defense by the Brigham Young University Engi- term “semi-variogram” rather than “variogram”;
neering Computer Graphics Laboratory.  GMS others may express random variables as other than
may be obtained from the U.S. Army Groundwater Z as has been done in this ETL, and it is common
Modeling Technical Support Center, (U.S. Army for different software to have different references
Engineer Waterways Experiment Station, Vicks- for directional angles when discussing anisotropy. 
burg MS 39180). 



ETL 1110-1-175
30 Jun 97

3-4

Table 3-1
Geostatistical Software Characteristics

Characteristic STATPAC GEO-EAS GSLIB GMS2.0

Operating system DOS DOX/UNIX Independent (requires WINDOWS 95 UNIX
  FORTRAN compiler)

Menu-driven Yes Yes No Yes
Batch processing Yes No Yes Yes

User modifications Yes, source code No Yes, source code No
  provided    provided

Data-set constraints Yes, modifications Yes Yes, modification Yes
  possible via   possible via
  source code   source code

ASCII output Yes Yes Yes Yes
Univariate statisitcs Yes Yes Yes Yes
Additional exploratory Yes Yes Yes Yes
  capabilities
Graphical support for Yes Yes Yes Yes
  analysis

Transformation Yes Yes Yes Yes
Back-transformation No No Yes Yes

Variogram construction Yes Yes Yes Yes
Variogram analysis Yes Yes Yes Yes
Variogram graphics Yes Yes Yes Yes
Cross-validation Yes Yes Yes Yes
  operations

Ordinary kriging Yes Yes Yes Yes
Universal kriging Yes No Yes Yes

Block kriging Yes Yes Yes Yes
Indicator kriging Yes Yes Yes No

Conditional simulation Perhaps with batch No Yes No
  processing

Three-dimensional Perhaps with batch No Yes Yes
  kriging   processing

Mapping Yes Yes Yes Yes
Contouring Yes Yes Yes Yes
Gray-scale maps Yes Yes Yes Yes

Line printer Yes No Yes Yes
High-resolution screen No Yes Yes via postscript Yes

High-resolution printer No Yes Yes Yes
Postscript No No Yes Yes
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Chapter 4
Practical Aspects of Variogram
Construction and Interpretation

4-1.  General

a. Chapter 2 presented the mathematical
foundation for geostatistics and the kriging tech-
nique.  One theme that pervades the technique is
the importance of the theoretical variogram.  The
theoretical variogram, or what we will often refer
to simply as the variogram, is a mathematical
function or model which is fitted to sample-
variogram points obtained from data.  Permissible
models, which include those given in Chapter 2,
belong to a family of smooth curves having par-
ticular mathematical properties and are each speci-
fied by a set of parameters.  Chapter 4 will
describe a sequence of stages for estimating and
investigating sample variogram points and a cali-
bration procedure for specifying the parameters of
the variogram model eventually fitted to the sample
points.  Although the calibration procedure is
largely an objective means for evaluating theoreti-
cal variograms, the process of obtaining sample
variogram points and finalizing a theoretical vari-
ogram remains an art as much as a science.  An
understanding of the material presented in Chap-
ter 2 as well as professional judgment achieved
through experience in geostatistical studies is
important in effectively using the guidelines pre-
sented in this section. 

b. An accurate estimate of a variogram is
needed from a kriging perspective because the cor-
relation matrix used to obtain the kriging weights
is constructed from the variogram values.  Even
more directly, the variogram affects the computa-
tion of the kriging variance (Equations 2-36 and
2-47) through the product of the kriging weights
and variogram values.  An accurate variogram also
has utility outside the strict context of kriging.  For
example, in augmenting a spatial network with new
data collection sites, the range parameter of the
variogram could be used as the minimum distance
of separation between the new sites and between
new and existing sites to maximize overall
additional regional information.  In another non-
kriging-specific application, the variogram is used
in dispersion variance computations in which the
variance of areal or block values is estimated from
the variance of point-data values (e.g., Isaaks and
Srivastava (1989), p. 480).

c. The stages of variogram construction are
described using an example data set of ground-
water elevations measured near Saratoga, WY
(Lenfest 1986), that are summarized in Table 4-1
and whose relative locations are shown in
Figure 4-1.

d. The sequence of steps in computing sample
variogram points depends on the stationarity prop-
erties of the regional variable represented by the
data.  If the mean of the regional variable is the
same for all locations, then it is said to be spatially

Table 4-1
Univariate Statistics for Example Data Sets1

Example Number of Minimum Maximum Mean Median Deviation Skewness
Identifier Measurements Transformation (Base units) (Base units)  (Base units) (Base units) (Base units) (Dimensionless)

Standard

Saratoga Drift 2,016.6 2,254.3 2,119.25 2,104.35 56.79 0.45

Water level A 83 Drift 25.6 65.68 42.30 38.54 10.13 1.03

Water level B 74 Drift 25.6 65.68 42.85 38.71 10.59 0.87

Bedrock A 108 None 22.64 80.48 44.42 42.82 10.76 0.89

Bedrock B 89 None 24.53 69.22 43.67 43.17 8.58 0.26

Water quality A 66 Natural log 2.08 8.01 5.19 5.59 1.75 -0.42

Base unit for Saratoga, water levels, A and B, and Bedrock A and B is feet; base unit for water quality A is log concentration,1

concentration in micrograms per liter.
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Figure 4-1.  Measured water levels from Saratoga
data

stationary; if the mean changes with location, then
it is spatially nonstationary.  Generally, if the data
have a stationary spatial mean, the discussions in
sections 4-3 and 4-7, which address nonstation-
arity and additional trend considerations, can be
omitted.  If the spatial mean is not stationary, as
for this example data set, then sections 4-3 and 4-7
become important, and the sequence of stages for
obtaining a variogram becomes an iterative pro-
cedure.  All variogram and kriging computations
for the Saratoga groundwater levels example were

performed by the interactive kriging software
described in Grundy and Miesch (1987).

4-2.  General Computation of Empirical
Variogram

a. As described in section 2-3, the variogram
((h) characterizes the spatial continuity of a
regional variable for pairs of locations as a func-
tion of distance or lag h between the locations. 
This variogram is sometimes called the theoretical
variogram because it is assigned a continuous
functional form that expresses the spatial correla-
tion for any lag in the region of analysis.  The
function is estimated by fitting one of the equations
given in section 2-3 to empirical or sample vario-
gram points 8((h) using data whose locations con-
tribute only a finite number of lags.  Although 8((h)
characterizes the spatial correlation of the data, it
is computed from residuals of the data off the spa-
tial mean.  Therefore, without prior knowledge of
nonstationarity in the underlying spatial process,
the first step in computing the sample variogram is
to identify existing nonstationarity indicated for the
spatial mean.

b. The approximation to Equation 2-19
begins by computing squared differences  from
the data values z(x ), z(x ), ...z(x ) collected at loca-i 2 n

tions x , x , ... x  1 2 n

(4-1)

If the spatial mean is stationary, then the squared
differences of the data are equivalent to the
squared differences of the residuals, and sample
variogram computations can be continued using
the data themselves.  If the spatial mean is strongly
nonstationary, the plot of Equation 4-1 versus the
distance between associated points may indicate a
trend or drift that would need to be removed before
further variogram computations could be made. 
Drift would have to be considered in HTRW
studies, such as determining contaminant concen-
trations areally dispersed from localized sources or 
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determining groundwater elevations following a e. To establish bins, either equal bin widths
local or regional gradient.  In such studies sample are specified and the distance between the two
variogram computations need to be made using most separated data points, h , is subdivided
residuals obtained by subtracting the estimated according to these equal increments, or a K is
drift value at each location from the value of the chosen that defines the bin width.  For the Sara-
datum at the location. toga data, a bin width of about 8 km established

c. The data in Equation 4-1 are differenced binned  values of Figure 4-2 are shown in Fig-
without considering the relative direction between ure 4-3.  The lag plotting positions are the average
the locations; that is,  is isotropically com- h values in the bin.  The symbol x indicates that
puted.  A plot of  versus h  for all i,j (i>j), N(h) is less than 30 pairs for the particular bin andi,j

where , produces a cloud of this differentiation will be discussed in section 4-3. 
points whose properties govern the behavior of 8(. Although the sample variogram is still preliminary,
The central tendency of the cloud would generally its general behavior at this stage is adequate to
increase with h.  A substantial increase in the indicate if nonstationarity needs to be addressed
central tendency that persists for large h can indi- before sample variogram refinement is undertaken.
cate a nonstationary spatial mean.  The cloud com-
puted for the Saratoga data, with groundwater
levels (z) in meters and distance (h) in kilometers,
is shown in Figure 4-2 and does show increasing
D  with increasing h, indicating potential a. An indication of substantial nonstationarity2

non-stationarity. or drift in the spatial mean would be a parabolic

d. Generally, there is a large amount of scat- occurs because differences between data contain
ter in these plots, as seen in Figure 4-2, and this differences in the drift component that increase as
scatter can conceal the central behavior of D  with h increases.  If Equation 2-16 is inserted into2

h.  One way to estimate the central tendency and to Equation 2-17, squaring the differences in µ
minimize the effect of aberrant data values is to greatly amplifies the increase with h.  In these
collect the D  into K bins or lag intervals of width cases of drift, generally a low-order (less than2

()h)  , k=1,...K and assign to 8( the average of the three) polynomial drift in (u,v) is fitted to the datak

values of D  in each bin.  This process is similar to and subsequently subtracted from the data to2

the way data are placed in bins for obtaining histo- obtain residuals.  Trend surfaces are not neces-
grams.  The expression for the kth average bin sarily limited to polynomial forms.  For example, a
value is numerical model of groundwater flow may be used

(4-2)

where N(h ) is the number of squared differencesk

that fall into bin k, and h  is the lag distance asso-k

ciated with bin k. I (h ) is an “indicator function”k i,j

that has a value of one if the h  falls into bin k andi,j

zero otherwise (it only includes values of  in
the calculation that have an h  that falls into thei,j

bin).  The lag value h  can be the midpoint of thek

bin or it can be the average of the actual lag values
for the points that fall in the bin. 

max

K=12 bins for (.  The 8( points computed from the

4-3.   Nonstationarity

shape through all lags in a plot of 8(.  This shape

to obtain residuals of groundwater head data.

b. In theory, the polynomial trend reflects a
slowly varying drift in the spatial mean and, as
such, one regional trend surface should be fitted to
all the data.  However, often the drift and residuals
are obtained locally; that is, using moving neigh-
borhoods of locations. Estimates of these values at
any point are thus made using a reduced number
(usually between 8 and 16) of surrounding loca-
tions.  This is done because ultimately the kriging
estimates are made using only the data values in
the given neighborhood.  Manipulating the kriging
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matrices takes less time when a smaller number of considerations needed for proper lagging.  As an
data values are used to make estimates and these example, for data collected on a uniform grid and
efficiencies can be significant when dealing with equal-sized bins, fixing an n to just satisfy the
large data sets.  Little accuracy is lost because the minimum N(h ) for the smaller lags will yield
nearest neighbors are the most influential in the insufficient data pairs to meet the minimum N(h )
kriging weighting scheme. for the larger lags.  Fixing an n to assure the mini-

c. A parabolic shape to 8( for the Saratoga N(h ) much greater than the minimum for the smal-
data is shown in Figure 4-3 for the sample vario- ler lags.  Therefore, the question of how much data
gram points plotted for lags up to about 32 km (the is required to adequately compute a variogram
first four points) and for lags beyond about 56 km. should also address the relative locations of the
The presence of a parabolic shape in the sample data-collection sites.
variogram points was not surprising, because
examination of the data indicates a north-south c. The first 10 of the 12 bins for 8( for the
gradient in the groundwater levels.  The simplest Saratoga data contained more than 30 data pairs. 
polynomial trend, linear in u and v, was fitted to all Therefore, the bin width can be decreased to get
the data using ordinary least-squares estimation. more points defining the early part of 8(.  These
Residuals obtained by subtracting this regional bin-width adjustments can be made to refine 8(
trend surface from the data were used to reestimate whether it is computed from the data or from the
8( in Equation 4-2 and the sample variogram for the residuals.  A plot of 8( for the residuals for the Sar-
residuals is shown in Figure 4-4. atoga groundwater elevations with the bin width

4-4.  Variogram Refinement

a. In the previous section, an initial 8( was problem areas, accessibility, and general spatial
specified by points computed from Equation 4-2. coverage.  In the Saratoga data set, nonuniform
In general, the larger N(h ) is for any bin or lag data spacing results in the number of data pairs ink

interval k, the more reliable will be the points each bin, although still greater than 30, being
defining 8((h ).  Also, the larger K is, the greater the highly variable among the bins.  This variabilityk

number of sample variogram points shaping 8(. yields different reliabilities for the points defining
However, N(h ) and K are competing elements of 8(.  To establish a balance for N(h ) among thek

8(.  Journel and Huijbregts (1978) suggest that bins, variable bin sizes can be used so that each
each lag interval k should have N(h ) equal to at bin contains approximately the same (large) num-k

least 30 pairs.  The American Society for Testing ber of points.  A bin with fewer points can be
and Materials (Standard D5922-96) suggests coalesced with an adjacent bin to form a wider bin
20 pairs for each lag interval.  For small data sets with a greater number of points.  Conversely, a bin
the number of intervals may have to be small to with an excessive number of points can be sub-
guarantee either number of recommended pairs in divided into adjacent, narrower bins. The coales-
all intervals. cing and subdividing procedure is largely trial and

b. It is difficult to determine the minimum satisfactory to the investigator.
number of data values n needed to satisfy the N(h )k

requirements for all lag intervals of a sample vari- e. The values of 8( at the smaller lag values
ogram.  Simple combinatorial analysis can estab- are the most critical to define the appropriate (. 
lish a sample size needed to achieve a given total Therefore, the trade-off between the number of
number of distinct pairs of items taken from the bins and the number of data pairs within each bin
sample, but it does not address the spatial can be varied for different regions of the sample 

k

k

mum N(h ) for the larger lags will generally havek

k

narrowed to about 6.5 km is shown in Figure 4-5.

d. Spatial data are usually not collected on a
uniform grid but occur in a pattern that reflects

k

error, until the distribution of the pairs of points is
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variogram.  At smaller lags, the numbers of data consider in interpreting the kriging results of the
pairs per bin can be nearer the minimum N(h ) to transformed data or in back-transforming krigingk

define more bins.  At larger lags, a smaller number results into the untransformed (original) units, as
of wider bins would be adequate.  Knowing that discussed in Chapter 1.  If a satisfactory variogram
the variogram should be a smooth function, ulti- of the original data cannot be achieved and a trans-
mately the analyst visually decides when the sam- formation is indicated, the sample variogram com-
ple variogram is sufficiently defined at all lags to putation process must begin again with Equa-
adequately approximate a theoretical variogram. tion 4-2.  Even though no transformation was

4-5.  Transformations and Anisotropy
Considerations

a. Transformations. b. Directional variograms and anisotropy.

(1)  A transformation is applied to a data set (1)  Anisotropy in the data can be investigated
generally for one of two interrelated purposes. by computing sample variograms for specific
First, a transformation can reduce the scale of directions.  Locations included in a given direction
variability of highly fluctuating data.  This varia- from any other location are contained in a sector of
bility would especially occur with contaminant a circle of radius h  centered on the location. 
concentrations in which order of magnitude The sector is specified by two angular inputs.  The
changes in data at proximate sites are not uncom- first is a bearing defining the specific direction of
mon.  The effects of such data would be erratic interest [measured counterclockwise from east
sample variogram points as exhibited by a large- (=0 )] and the second is a (window) angle defining
amplitude, ill-defined sawtooth pattern of the lines an arc of rotation swept in both directions from the
connecting the points. bearing.  Thus, in the terminology used here, the

(2)  Second, a proper transformation of data window angle.  Differences in sample variograms
whose probability distribution is highly skewed computed using these angle windows specified for
often produces a set of values that is approxi- different directions can be an indication of
mately normally distributed by mitigating the anisotropy.
influence of problematic extreme data values.  A
data set with a normal distribution is important in (2)  Anisotropy is generally either geometric or
kriging when confidence levels of the estimates are zonal.  Geometric anisotropy is indicated by direc-
desired.  This usage of confidence levels in a tional theoretical variograms that have a common
kriging analysis will be illustrated in Chapter 5. sill value, but different ranges.  The treatment of

(3)  Among the more common transformations used.  The lags of the directional variograms can
is the natural log transform.  As an example, for be scaled by the ratio of their ranges to the range
this transformation, the 8( will be the sample vari- of a standard or common variogram. In some
ogram values of logarithms, and subsequent kriged cases, the lags of all directional variograms are
estimates will be logarithms.  Another transfor- scaled by their respective ranges, and a common
mation that is often used, especially in spatial variogram with a range of 1 is used.  Groundwater
analyses of contaminant levels, is the indicator contaminant plumes often have geometric aniso-
transformation described in Chapter 2.  Although a tropy in which the prevailing plume direction
transformation might achieve better-behaved sam- would have a greater range than that of the transect
ple variogram points, there are subtleties to of the plume.

needed for the Saratoga data, an example using a
logarithmic transformation and an example using
the indicator transformation are presented in
Chapter 5.

max

o

total angle defining a direction is equal to twice the

geometric anisotropy is dependent on the software
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(3)  Zonal anisotropy is indicated by direc- (6)  The computed sample variograms for the
tional variograms that have the same range but general north-south and east-west directions for the
different sills.  Pure zonal anisotropy is usually not Saratoga data are shown in Figure 4-6.  The north-
seen in practice; typically it is found in combina- south variogram is specified by a direction angle of
tion with geometric anisotropy.  Such mixed 90 deg and a window angle of 45 deg.  The north-
anisotropy may be encountered if evaluating the south variogram reveals the preferential north-
variograms of three-dimensional HTRW sampling south data alignment by mimicking the omni-
results.  Variability of such data (as indicated by directional (direction angle = 0 deg and window
the sill of the variogram) may be significantly angle = 90 deg) sample variogram of Figure 4-3. 
higher and the range significantly shorter in the The east-west variogram is specified by a direction
vertical direction than in the horizontal direction. angle of 0 deg and a window angle of 45 deg.  The
In order to model this mixture of anisotropic vari- lack of pairs of locations for the east-west vario-
ograms, the overall variogram is set to a weighted gram precludes a good analysis for this direction,
sum of individual models of the directional vario- but the overlap of the few sufficiently defined
grams scaled by their ranges.  In this process, variogram points with the north-south variogram
called nesting, the choice of weights requires a trial indicates a consistency of drift in the two direc-
and error approach with a constraint that the sum tions.  Because of this consistency, an isotropic
of the weights equals the sill of the overall vario- variogram is assumed for the Saratoga residuals. 
gram.  The reader is referred to Isaaks and An example of anisotropic variograms is described
Srivastava (1989, pp. 377-390) for further infor- in Chapter 5.
mation on both types of anisotropy.

(4)  For a given number of data locations,
directional sample variograms will necessarily
have fewer points for any lag when compared to
the points for the same lag in the omnidirectional a. General.
variogram.  Hence, there will be less reliability in
the directional-variogram point values, which (1)  The importance of adequately defining the
would be a critical constraining factor for small bin values of a sample variogram is substantiated
data sets or for a data pattern that does not con- by the need to accurately generalize the data-based
form to a direction of anisotropy.  For a general behavior of the sample variogram by a theoretical
idea of the sufficiency of the data to adequately variogram (. The parameters controlling the spe-
determine any anisotropy, the computations of cific behavior of theoretical variograms are the
anisotropic sample variograms can be initially nugget value, the range, the sill, or in the case of a
limited to two orthogonal directions with window linear variogram, a slope parameter.  Of these
angles of 45 deg. parameters, the nugget and the sill can be related to

(5)  Directional sample variograms also can be
used to further delineate nonstationarity of the (2)  The nugget is essentially the extrapolation
spatial mean.  If the omnidirectional sample vario- of the sample variogram to a lag of zero.  It
gram indicates a drift in the data, the directional reflects the uncertainty of the variogram at lags
variograms may determine the dimensionality of that are much smaller than the minimum separation
the drift.  That is, although they may not establish between any two data locations.  The nugget value
the degree of the polynomial in the drift equation, can include measurement error variance, and an
the directional sample variograms can indicate the estimate of this variance will approximate a mini-
relative strengths of the drift in the u and v mum value of the extrapolation.
directions.

4-6.  Fitting a Theoretical Variogram to the
Sample Variogram Points

properties and statistics of the data. 
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Figure 4-6.  Initial directional sample variogram points for raw Saratoga data--A, north-south and B, east-west
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(3)  The sill determines the maximum value of Geometric relationships to aid in obtaining param-
a variogram and approximates the variance of the eters for the four variogram forms are described in
data.  However, the points defining (8 take prece- the following sections and are illustrated in Fig-
dence over the sample variance in locating the sill. ure 2-3 for reference.
Some variograms are unbounded, and others may
only reach a sill value asymptotically.  A defined b. Exponential variogram.
sill allows conversion of the variogram to a covari-
ance function using Equation 2-27, which is gen- The exponential variogram (Equation 2-23) is
erally done because computations in the kriging specified by the nugget g, sill s, and a practical
algorithms are more efficiently performed using a range value r.  The range is qualified as practical
covariance function. because the sill is reached only asymptotically. 

(4)  Fitting a function to the sample variogram different from the behavior of the spherical vario-
values can range from a visual fit to a sophisti- gram in that the convex behavior extends to the
cated statistical fit.  A statistical fit is an objective nugget value (Figure 2-3).  Again, a nugget value
method as long as the choice of bins and weighting and a sill value are first specified based on the 8(
of the sample variogram points remain fixed. points.  The practical range is chosen so that the
However, because the inputs will vary with investi- value of the resulting exponential function evalu-
gators, inherent subjectivity persists as in a visual ated at the practical range lag is 95 percent of the
fit.  A final calibration of the variogram param- sill value.  The specified exponential function
eters would be based on the kriging algorithm and, would mesh with the sample variogram points at
thus, either of the initial fitting methods at this least through the practical range lag.  An initial
stage would suffice. estimate of the practical range can be made by

(5)  Because the initial part of the variogram line tangent to the variogram at the nugget is at a
has the most effect on subsequent kriging output, a lag value equal to one-third of the assumed prac-
good estimate of the nugget value becomes a most tical range value as illustrated in Figure 2-3. 
important first step.  The range and the sill, in that Examples of the exponential variogram may be
order, complete the ranking of the influence of found in spatial studies of sulfate and total alka-
variogram parameters on the output of a geostatis- linity in groundwater systems (Myers et al. 1980).
tical analysis.  Whatever the fitting method used,
the theoretical variogram needs to be supported by c. Spherical variogram.  The spherical vario-
the sample variogram values.  For variograms with gram parameters (Equation 2-24) are a nugget
a range parameter, this support should extend to value g, a range r, and a sill s.  At smaller lag
the range.  Journel and Huijbregts (1978) suggest values the sample variogram points indicate linear
that this support should be through one-half the behavior from the nugget that then becomes con-
dimension of the field or essentially through one- vex and reaches a sill value at some finite lag
half the maximum lag distance of the sample data. (Figure 2-3).  A sill is estimated, and a line drawn

(6)  Most geostatistical studies can be success- variogram would intersect the sill at a lag value
fully completed using the following four singular approximately equal to two-thirds of the range. 
theoretical variogram forms:  exponential, spheri- With these estimates of the parameters, a spherical
cal, Gaussian, and linear functions (Figure 2-3). variogram is defined that should be supported by
For the example variogram determination the sample variogram points.  If the spherical plot
described in this section, only one of these singular does not fall near the sample variogram points,
forms will be selected; however, positive linear adjustments need to be made to the parameter esti-
combinations of these forms also are acceptable as mates and the subsequent fit evaluated.  Although
theoretical variograms (see section 4-5b). the spherical variogram is one of the most often

The initial behavior of the exponential variogram is

checking if the intersection of the sill value with a

through the points of the initial linear part of the
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used models for real valued spatial studies, it ( when the data are spatially correlated.  But (
seems to be a predominant model for indicator cannot be estimated until a drift equation is
values at various cutoff levels as, for example, in a obtained to yield the residuals.  Therefore, obtain-
study of lead contamination (Journel 1993).   ing a sample variogram and a subsequent theoreti-

d. Gaussian variogram.  The Gaussian vario- drift form is an iterative process (David (1977),
gram parameters (Equation 2-25) are a nugget pp. 273-274) framed by the following steps: 
value g, and a sill s, and this variogram also has a
practical range r.  The Gaussian variogram is hori- (1)  An initial variogram is specified and drift
zontal from the nugget, becomes a concave upward coefficients are computed to obtain residuals.  For
function at small lags, inflects to concave down- this step, a pure nugget (i.e. constant) variogram
ward, and asymptotically approaches a sill value can be used to compute the initial estimates of the
(Figure 2-3).  After a nugget value and sill value drift coefficients.  This is an ordinary least-squares
are specified based on the points, the variogram estimate of the drift yielding a first-iteration sam-
value at a lag of one-half the estimated practical ple variogram of residuals.
range will be two-thirds of the sill value.  Again,
this fitted variogram needs to be supported by the (2)  A theoretical variogram is fitted to the
8( points to a reasonable degree.  As will be sample variogram of the residuals and is used to
described in the example using the Saratoga data, obtain updated drift coefficients.
the Gaussian variogram often is used where the
variable analyzed is spatially very continuous, (3)  The residuals from the drift obtained in
such as a groundwater potentiometric surface. step b are used to compute an updated sample

e. Linear variogram.  Parameters for a linear
variogram (Equation 2-26) are a nugget value g, (4)  The sample variogram computed at the end
and a slope b.  Sample points indicating a linear of step 3 is compared to the sample variogram of
variogram would increase linearly from the nugget step 2.  If the two sample variograms compare
value and fail to reach a sill even for large lags favorably, then the theoretical variogram from
(Figure 2-3).  With the nugget as the intercept, the step 2 is accepted as the variogram of residuals for
slope is computed for the line passing through the subsequent kriging computations.  If the sample
8( points.  A pseudosill s can be defined as the variogram from step 3 differs markedly from the
value of the line at the greatest lag, h , between sample variogram of step 2, steps 2-4 are repeatedmax

any two locations. This lag becomes the defacto using the sample variogram of the most recent
range r for a linear variogram.  Examples of the step c.
usage of the linear variogram occur in hydrogeo-
chemical studies of specific conductance and in b. Generally, the plot of the points of 8( from
studies of trace elements such as barium and boron a set of residuals will initially increase with h,
(Myers et al. 1980). reach a maximum, and then decrease as seen in

4-7.  Additional Trend Considerations

a. If a drift in the data is indicated as in sec- behavior in the variogram of the residuals gen-
tion  4-3, the theoretical variogram of residuals erally would more readily occur with a higher
that has been fitted thus far is used to update the degree of drift polynomial.  This behavior should
drift equation.  Although ordinary least squares not prohibit acceptable variogram determination
often suffices for computing a polynomial drift because the initial points of the sample variogram
equation, drift determination itself is a function of of residuals are still indicative of the theoretical

cal variogram from drift residuals of a specified

variogram.

Figure 4-4.  This typical haystack-type behavior,
discussed by David (1977, pp. 272-273), is attri-
buted to a bias resulting from the estimation error
in the drift form and its coefficients.  Thus, this
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variogram.  For example, the lag associated with
the maximum of 8( of the residuals can be a good
first approximation for the range of the theoretical
variogram. a. General.

4-8.  Outlier Detection

a. Outliers in a data set can have a substantial ing cross-validation technique.  In this procedure,
adverse effect on 8(.  However, divergent data the fitted theoretical variogram is used in a kriging
values can be screened for evaluation using a analysis in which data values are individually sup-
Hawkins statistic (Hawkins 1980), which is pressed and estimates made at the location using
described in the context of kriging by Krige and subsets of the remaining points.  As described in
Magri (1982).  A neighborhood containing 4 to 10 section 4-3, these subsets are the data points in a
data points, approximately normally distributed, moving neighborhood surrounding the point under
around each suspected outlier must be defined. consideration.  The calibration estimate made at
Despite potential outliers in the data set, a best each data location requires a matrix inversion,
guess initial theoretical variogram also is needed. which could be very time-consuming if all remain-

b. The Hawkins statistic is obtained by com- matrices rather than just those within a neighbor-
paring a suspect datum to the mean value of the 4 hood of a limited search radius. 
to 10 surrounding data, the smaller number being
sufficient if the variability is lower.  The spacing (2)  After kriged values at all data locations
between these surrounding points is accounted for have been estimated in the above manner, the data
by the properties of the chosen variogram.  A value are used with their kriged values and kriging stan-
for the statistic of 3.84 or higher would indicate an dard deviation to obtain cross-validation statistics. 
outlier on the basis of a 95-percent confidence A successful calibration is based on criteria for
interval.  A larger number of surrounding points these statistics, which are described in the next
has the direct effect of increasing the magnitude of section.  If the criteria cannot be reasonably met by
the statistic.  Anomalous points are removed from adjusting the parameters in the given theoretical
the data set and the procedures described for variogram function, then calibration should be
obtaining the sample variogram are repeated for reinitialized with a different theoretical variogram
the smaller data set.  There were no outlier prob- function.  In some data sets with nonstationary
lems in the Saratoga data. spatial means, the drift polynomial may have to be

satisfactory calibration.c. There is debate among geostatisticians
regarding the merit of automated outlier-detection
methods.  A procedure such as that described here
is presented as an investigative tool with the under-
standing that the investigator will also use atten-
dant justification along with a Hawkins-type
statistic to ultimately decide if a data value is
discarded as a true outlier or retained as a valid
observation.  In some situations, highly problem-
atic data values are removed for computation of
the sample variogram points but are reinstated for
kriging.

4-9.  Cross-Validation for Model 
Verification

(1)  Parameters of the theoretical variogram
obtained from the initial fitting and refinement of
the sample variogram are calibrated using a krig-

ing data locations were used to construct the

changed as well as the variogram to achieve a

b. Calibration statistics.

(1)  The kriging cross-validation error e  cor-i
responding to measurement z(x ) is defined asi

(4-3)

where is the kriged estimate of based
on the remaining n-1 measurements in the data set.  
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The kriged estimate is obtained by ordinary kriging results is the unbiasedness condition where 
if the spatial mean is constant or by universal krig-
ing if the spatial mean is not stationary.  A reason-
able criterion for selecting a theoretical variogram
would be to minimize the squared errors, ,
with respect to the variogram parameters.  How
ever, unlike ordinary least-squares regression,
which also minimizes the sum of squared errors,
simply minimizing the squared errors is not suffi-
cient for kriging because the resulting model can
yield highly biased estimates of the kriging vari-
ances, , where is the kriging vari-
ance at location x .  This simple minimizationi

would give unrealistic measures of the accuracy of
the kriging estimates.  To guard against such bias,
an expression for the square of a reduced kriging
error is defined:

(4-4)

where the kriging variances are computed using
either Equation 2-36 or 2-47.  If the kriging vari-
ance is an unbiased estimate of the true mean-
squared error of estimate, then the reduced kriging
errors would have an average near one.  Therefore,
the standard cross-validation procedure for evalu-
ating a theoretical variogram is:

(4-5)

(2)  The expression to be minimized is called
the kriging root-mean-squared error and the con-
straint is called the reduced root-mean-squared
error.  The reduced root-mean-squared error
should be well within the interval having endpoints

 and  (Delhomme

1978).  An additional check on the cross-validation 

(3)  As indicated in Chapter 2, if probabilistic
statements concerning an actual value of Z at an
unmeasured location are to be made relative to the
kriged estimate and the kriging variance at the
location, it is necessary to explore the distribution
of the cross-validation kriging errors.  In particu-
lar, it is desirable that the reduced errors, e~i

=1,2...,n, are approximately normally distributed
with mean 0 and variance 1.  A histogram or nor-
mal probability plot of the reduced kriging errors
can be used to assess the validity of assuming a
standard normal distribution for the reduced krig-
ing errors.  Additionally, if the distribution of
reduced kriging errors can be assumed to be stan-
dard normal, outliers not detected using the method
discussed in section 4-7 may be detected by com-
paring the absolute values of the reduced kriging
errors to quantiles of the standard normal
distribution. 

(4)  Using the Saratoga data, a spherical vario-
gram was fitted to the refined sample variogram of
the residuals.  The estimated nugget was about
1.49 m , the sill was 133.8 m , and the range was2 2

about 48 km.  Because of difficulty in determining
an exact extrapolated value for the nugget, the
value of 1.49 m  was selected based on an esti-2

mated measurement error related to obtaining
water levels at the well depths in the Saratoga
valley. 

(5)  After two iterations using drift residuals,
as described in section 4-7, a final variogram was
chosen with a nugget of 1.49 m , a sill of 148.6 m ,2 2

and a range of 44.8 km (Figure 4-7).  These
parameters defined the theoretical variogram used
to obtain the cross-validation errors using univer-
sal kriging with an assumed linear drift.  The best
combination of statistics that could be obtained
after several attempts at refining the model were a
root-mean-squared error of 3.45 m and a reduced
root-mean-squared error of 0.5794.  The
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reduced-root-mean-squared error is too small, parameters, generally, also will have an effect on
indicating that the kriging variances produced by the mean-squared error.  The larger the nugget is
the model are too large compared to the actual as a percentage of the sill, the larger the mean-
squared errors.  This fact, coupled with the rather squared error will be.  In general, improvements in
large root-mean-squared error, makes the theo- one statistic are usually made at the expense of the
retical variogram model unacceptable.  In sec- other statistics.  The optimization of the statistics
tion 4-9c, a Gaussian variogram is fitted to the as a set is, in effect, a trial and error procedure that
data that produces much better cross-validation is operationally convergent.
results than the results for the spherical variogram.

c. Variogram-parameter adjustments. mate a standard normal distribution.  If this is the

(1)  If any of the cross-validation statistics to achieve a more normal distribution, and the
vary unacceptably from their suggested values, variogram estimation procedure would be repeated.
minor adjustments to the variogram parameters
can be made to attempt to improve the statistics. (5)  Because no convergence could be reached
Whatever modifications are made to the param- for parameter values of a spherical variogram for
eters, they should not have to be so severe that the the Saratoga data, a Gaussian theoretical vario-
variogram function drastically deviates from the gram  was fitted to the sample variogram of
sample variogram points.  If the support of the residuals in Figure 4-4.  This choice was made
sample variogram points is compromised in order because the initial sample variogram points could
to achieve acceptable cross-validation results with be interpreted to have a slight upward concavity,
the given drift-variogram model, a different drift- but eventually reached a sill.  This behavior can be
variogram combination should be investigated. attributed to correlation rather than to further drift. 

(2)  A reduced root-mean-squared error that is sian parameters, a Gaussian variogram with a
unacceptable may be improved upon by adjusting nugget of 1.49 m , a sill of 185.81 m , and a range
the range parameter or the nugget value of the of 27.52 km (Figure 4-8) yielded a root-mean-
variogram.  Modifying the range parameter should squared error of 2.33 m and a reduced-root-mean-
be considered first and any shifts in the nugget squared error of 1.083.  The mean cross-validation
value should be minimal and made only as a final error is 0.0195 m.  These values represent an
recourse.  Calibration errors are relatively insen- improvement over the spherical variogram and
sitive to minor adjustments of the sill. were deemed acceptable for the Gaussian

(3)  If the reduced root-mean-squared error is
too small, as in the Saratoga example, extending (6)  A probability plot of the reduced kriging
the range (equivalent to decreasing the slope for a errors using the final Gaussian variogram is shown
linear variogram) will decrease the kriging vari- in Figure 4-9.  It is reasonably linear between two
ance and thus increase the reduced root-mean- standard deviations and, thus, approximates a
squared error.  If a shift in the nugget value is standard-normal-distribution function.  Finally, a
required, a decrease in the nugget will reduce the plot in Figure 4-10 of the data versus their kriged
kriging variance.  If the reduced root-mean- estimates indicates that the linear drift-Gaussian
squared error is too large, then a contraction of the variogram model selected for the Saratoga data
range or a positive shift in the nugget value can be would produce accurate estimates of groundwater
made, keeping in mind the above caveat of priority elevations for interpolation or contour gridding in
and extent of the changes.  Changes in these the region.

(4)  Reduced kriging errors may not approxi-

case, a transformation of the data may be needed

After an iterated cross-validation with the Gaus-

2 2

variogram. 
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Chapter 5
Practical Aspects of Geostatistics in
Hazardous, Toxic, and Radioactive
Waste Site Investigations

5-1.  General

a. In this chapter, several example applica-
tions are described.  The applications have been
developed using hydrologic, geologic, and contami-
nant data from established and well-studied haz-
ardous waste sites.  The real nature of the data
permits discussion of some problems that can
occur during HTRW site investigations that stem
not only from natural field conditions, but also
from typical problems that are associated with the
types of data involved.  In addition, the real nature
of the example data provides an opportunity for
comparison between kriging estimates and the real
data.  In accordance with the purpose and scope of
this ETL, these comparisons will be brief and
general.  This ETL does not provide the compre-
hensive analysis of data that is addressed by other
more elaborate studies.  

b. The principal intent of the examples is to
provide systematic descriptions for a few of the
large number of possible types of applications that
investigators may use during HTRW site investi-
gations.  The examples are not intended to provide
guidance for comprehensive analysis of the
included data.  This ETL will, however, present
some fundamental problems that can occur in
geostatistical applications and, in some examples,
indicate some possible alternatives.

c. With each example, a purpose will be
established and a general environmental setting
will be given.  Most aspects of variogram con-
struction and calibration will be briefly described
and illustrated graphically and in tabular form.  A
comprehensive treatment of variogram construc-
tion has been presented in Chapter 4.

d. GEO-EAS software has been used when-
ever the example data did not need universal krig-
ing; for those examples, STATPAC was used.  As

indicated in Chapter 3, both of these software
packages run on the DOS platform (Table 3-1),
which will probably be most convenient to readers. 
The results of kriging estimates are portrayed by
gray-scale maps rather than by contours because
of the objective nature of the gray-scale format. 
North is at the top of all maps presented in this
ETL, although this orientation may represent some
deviation from the real data.

5-2.   Water-Level Examples

a. The following examples are for ground-
water levels.  The principal purpose of the exam-
ples is to expose the reader to a kriging exercise
using groundwater levels and to indicate how, in a
simple manner, kriging standard deviations may be
useful to investigators interested in evaluating
monitoring networks.  The data come from a
water-table setting in unconsolidated sediments
where the local relief for the land surface is about
30 m.  The data involved in this example are con-
sidered virtually free of actual measurement error.

b. The location of measured water levels is
shown in Figure 5-1a and the basic univariate
statistics for this data set are listed in Table 4-1;
modifications to the measured data, in the form of
addition and removal of measured values, are
shown in Figures 5-1b and 5-1c.  The techniques
described in Chapter 4 were used to guide the
following steps for variogram construction:

(1)  A raw variogram analysis, along with
basic hydrologic knowledge of water-level behav-
ior, indicated that universal kriging would be
needed for this analysis.

(2)  To obtain a stable variogram of residuals,
an iterative, generalized least-squares operation
was initially used to remove prominent linear drift
of the form a + bu + cv, observed in the measured
water levels.

(3)  After drift was removed, residuals were
determined to be stationary and universal kriging
with a linear drift was appropriate.
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Figure 5-1.  Measured data for water-level examples--A, original data; B, original data without dropped sites;
C, original data with added sites (added sites indicated with +) (Sheet 1 of 3)

A Gaussian model was used to fit the stabilized listed in Table 5-1.  Cross-validation statistics
variogram of residuals (Figure 5-2a), which has a conform to the criteria discussed in Chapter 4.
nugget of 0.093 m , a sill of 2.69 m  and a range2 2

of 1,219 m (Table 5-1). c. Linear drift is commonly observed in

(5) Cross-validation was performed, and the major anthropogenic activities, such as large
results are shown in Figures 5-2b and 5-2c, and groundwater withdrawals.  With these 

groundwater elevation data where there are no
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Figure 5-1.  (Sheet 2 of 3)

circumstances there is usually a fairly uniform and shape and a linear drift was identified.  Once the
general groundwater movement that is generally drift was identified and characterized, universal
expressed in terms of direction.  This uniform and kriging procedures were used.
general nature introduces a nonstationary element
to the data that, in geostatistics, is referred to as d. A Gaussian model is usually appropriate
drift. As indicated in Chapter 4, the presence of for variograms with highly continuous variables
drift is indicated by a parabolic variogram shape. such as groundwater-elevation data, and it is par-
In this example, the initial variogram in the raw ticularly appropriate in this example.  The vario-
variogram analysis had a characteristic parabolic gram (Figure 5-2a) at small lags beyond the nugget
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Figure 5-1.  (Sheet 3 of 3)

has an upward concavity that cannot be fit with a mates should be computed using neighborhoods
linear, spherical, or exponential model.  The with a search radius less than 610 m.  In Chapter
observed shape was interpreted as a function of 4, the initial part of the variogram was described
continuous small-scale variability.  The Gaussian as having the most effect on subsequent kriging
model fits the bowl shape of the small lag data estimates.
(and other data to a lag of about 610 m) well, but
it is not flexible enough to closely fit the points e.  The established variogram then was used
much beyond 610 m, indicating that kriging esti- with the measured data to produce universal 
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Figure 5-2.  Variogram and variogram cross-validation plots for residuals in water-level example--A, theoretical
variogram; B, cross-validation scatterplot; C, cross-validation probability plot (Sheet 1 of 3)

kriging estimates for all points in a 26-by-26 grid g. To use the kriging standard-deviation
with a grid size of about 61-by-61 m.  A gray- values in a more quantitative manner, the investi-
scale map of the kriging water levels is shown in gator needs to establish some assurance that the
Figure 5-3a and basic univariate kriging estimate measured data and the reduced kriging errors are
statistics are listed in Table 5-2a (water level A). approximately normally distributed and also that
The kriging results a are a good representation of the assumption of stationary residuals after drift
the results from other more elaborate studies. removal is correct.  If the investigator is confident

f. Kriging standard deviations for the kriging principles involving confidence intervals can be
estimates are shown in Figure 5-3b.  The magni- applied.  In this example, the standard deviation of
tude of kriging standard deviations can provide about 0.35 throughout most of the map indicates
investigators with a direct indication of where the that there is a 95-percent chance that the true value
uncertainty associated with kriging estimates is at a location where there is a kriging estimate will
relatively high or low.  The areas of greatest uncer- be within about 0.70 (twice the kriging standard
tainty for the kriged water levels are in the upper deviation) of the kriging estimate. 
right and lower left corners of the map, where
standard deviations are as high as about 1.4 and h. As an example of evaluating network
0.8.  Not surprisingly, these areas are where the density and the accuracy of kriging estimates, two
density of the measured data is relatively low. new maps were developed.  To make the first map,
Throughout much of the remainder (about 70 per- a decrease in network density was effected by
cent) of the map, the kriging standard deviation is removing nine measured locations from the north-
almost constant at about 0.35. west part of the area (Figure 5-1b) where sampling

about these assumptions, then the basic statistical
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Figure 5-2.  (Sheet 2 of 3)

density was high and kriging standard deviations locations.  Consequently, values of zero were used
were low.  Kriging estimates were produced for the for the nine new measurement locations and only
same grid and the basic univariate kriging estimate the resultant map of kriging standard deviations
statistics are listed in Table 5-2 (water level B). (Figure 5-3d) is of interest.  The map shows that
The map shown in Figure 5-3c indicates that the the kriging standard deviations in the lower left
ratio of the original kriging standard deviations and corner, which formerly had values of about 0.8,
the kriging standard deviations with the nine mea- have been decreased by a factor of approximately
sured locations removed is always very close to 0.25, which indicates that the kriging estimates,
1.00, which indicates that there is very little dif- based on the geometry of the network, are more
ference between the two sets of kriging standard reliable.
deviations and that water levels are oversampled in
the area where the nine measured locations were
removed.

i. To produce the second map (Figure 5-1c) a. The following examples are for bedrock
nine locations were added in the southwest corner elevations.  The principal purposes of the examples
where the sampling density was relatively low and are to familiarize the reader with a kriging exercise
the kriging standard deviation was relatively high. using bedrock elevations and to describe block
In section 2-4, Equation 2-47 indicates that the kriging.  The data come from an area where bed-
universal kriging variance depends on the vario- rock consists of a series of intercalated terrestrial
gram, the type of trend, and measurement loca- deposits that have been weathered somewhat and
tions; in this respect the kriging standard deviation then covered with alluvium.  The opportunity for
does not depend on the values at measurement measurement error in these types of data is 

5-3.  Bedrock-Elevation Examples
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Figure 5-2.  (Sheet 3 of 3)

inevitable because the determination of just where (3)  Cross-validation was performed, and the
bedrock begins is complicated and subjective.  results, (Table 5-1, bedrock A), were not

b. The set of measured locations, set A, is
shown in Figure 5-4a and the basic univariate sta- c. The cross-validation exercise produced a
tistics are listed in Table 4-1 (bedrock A); modifi- reduced-root-mean-squared error of 2.146
cations to the measured data, in the form of [Table 5-1 (bedrock A)] which indicates, as
removal of sites is shown in Figure 5-4b.  The described in Chapter 4, that the kriging variance is
techniques described in section 4-1 were used to underestimated to an unsatisfactory degree.  Fur-
guide the following steps for variogram ther attempts to fit the Gaussian model to the
construction: sample variogram points produced better cross-

(1)  The raw variogram indicated a stationary began to depart substantially from the sample
spatial mean.  The data were assumed to be suit- variogram points at the lower lag sample points. 
able for ordinary kriging. As a result, the distribution of the residuals was

(2)  An isotropic Gaussian model was used to eastern, parts were determined to contain prob-
fit the variogram which had a nugget of 0.650 m , lematic data values that rendered the distribution2

a sill of 12.54 m , and a range of 914 m nonhomogeneous.  The nonhomogeneous nature is2

(Table 5-1, bedrock A). related to an incised channel present on the 

acceptable.  

validation statistics; however, the Gaussian curve

explored, and the eastern, and especially north-
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Figure 5-3.  Kriging results for water-level examples--A, kriging estimates for original data; B, kriging standard
deviations for original data; C, ratio (original data to original with dropped sites) of kringing standard
deviations; D, kriging standard deviations for original data with added sites (Sheet 1 of 4)

bedrock surface.  At this juncture, the measured d. The first alternative considered was to fit a
data were restricted to exclude the outlying mea- contrived and nongradual surface to the measured
surements.  Before this decision was made, two data and remove the outlier effect.  A splined sur-
alternative methods for dealing with the outlying face could be capable of producing the desired
values were considered and deemed beyond the result.  The decision whether or not to pursue such
scope of this effort.  However, a brief discussion of a remedy becomes somewhat philosophical.  In a
the situation is appropriate. relatively simple example, as in this bedrock 
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Figure 5-3.  (Sheet 2 of 4)

example, such a remedy may be entirely appro- approach may be necessary to avoid an undue
priate; however, some investigators may support amount of compromise.
the idea that the situation is actually dealing with
two unique and homogeneous domains.  Therefore, e. The restriction of measured data, set B, is
the second alternative considered, distributing the shown in Figure 5-4b and the basic univariate sta-
kriging process so that each homogeneous domain tistics are listed in Table 4-1 (bedrock B).  The
is addressed independently, becomes more attrac- restriction exercise resulted in removing 17 meas-
tive.  In more complicated applications where a ured locations and in the truncation of the north-
large number of domains are present, a distributed eastern part of the area so that the area became
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Figure 5-3.  (Sheet 3 of 4)

polygonal rather than rectangular.  Again, the tech- (2)  Initial cross-validation was performed, and
niques described in Chapter 4 were used to guide the nugget was changed from 0.650 m  to 0.743 m
the following steps for variogram construction: to improve cross-validation statistics.  The final

(1)  A Gaussian model was used to fit the vari- istics are listed in Table 5-1.
ogram which had a nugget of 0.650 m , a sill of2

8.36 m , and a range of 732 m.  The variogram2

indicated a stationary spatial mean. 

2 2

variogram is shown in Figure 5-5a and character-
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Figure 5-3.  (Sheet 4 of 4)

(3)  Final cross-validation was performed, and was used, along with the measured data, to pro-
the results, shown on Figures 5-5b and 5-5c and duce ordinary kriging estimates for all points in a
listed in Table 5-1 (bedrock B), were acceptable. 52-by-52 grid with a spacing of about 30-by-30 m,

f. The large difference between the sill because of the restriction operation.  For the krig-
defined for the initial data set and the sill for the ing procedure, a search radius of about 914 m
restricted data set (12.54 m  and 8.36 m ) supports witha maximum of 16 and minimum of 8 sur-2 2

the hypothesis that the original data set is actually rounding locations was specified.  Gray-scale
two different domains.  The final variogram then maps of the kriging estimates and kriging standard

which is truncated along the northeastern border
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Table 5-2
Univariate Statistics for Gridded Kriging Estimates in Example Applications1

Example (Base (Base (Base base deviation Skewness
Identifier Transformation units) units) units) units) (base units) (dimensionless)

Minimum Maximum Mean Median Standard

Water level A Drift 24.34 65.00 45.86 44.46 10.15  0.11
Water level B Drift 24.59 65.00 45.84 44.45 10.14  0.11

Bedrock B None 26.13 64.88 41.45 39.78   7.71  0.82
Bedrock C None 26.72 64.39 41.50 39.69   7.63  0.82

Water Natural log   2.92   7.07   5.17   5.03   0.72 -0.06
 quality A

Base units for water level A and B and bedrock B and C is feet; base unit for water quality A is log concentration, concentration in1

micrograms per liter.

deviations are shown in Figures 5-6a and 5-6b, determined for a contaminant.  The principal pur-
respectively, and the univariate kriging estimate poses of the examples are to familiarize the reader
statistics are listed in Table 5-2 (bedrock B).  The with a kriging exercise using water-quality infor-
kriging results indicate channel-like features in the mation and to illustrate indicator kriging.  The
bedrock  surface, as well as a prominent bedrock examples also will familiarize the reader with data
high at the south border of the area; the results are that are strongly anisotropic and need transforma-
a good representation of the results from other tion.  The data come from a water-table aquifer
more elaborate studies. developed in alluvial sediments where the depth to

g. For an example of block kriging, an invest- laboratories were involved in measuring the con-
igative goal of establishing block values of bedrock centration of the contaminant in the water-quality
elevation for a finite-difference groundwater model examples.  Each of the analytical laboratories was
grid having about 120- by 120-m cells was required to follow rather comprehensive guidelines
assumed.  The same variogram and search criteria that specified tests of instrument performance
were used to estimate block values for a 13-by- before sample determinations were made, as well
13 grid with about 120- by 120-m spacing; a as measurement of extraction efficiencies. 
4-by-4 block was specified.  Each kriging value Because of these performance guidelines, the
shown in Figure 5-6c is interpreted as an estimate opportunity for errors due to instrument error was
of the average value of bedrock elevation over the considered to be either known or relatively low.  In
about 120- by 120-m block.  The standard devi- addition to using performance guidelines, field
ation for the block estimates is less than the stan- quality-assurance samples were also collected. 
dard deviation for the point estimates (Table 5-2). These samples can be used to evaluate other types
Gray-scale maps of the kriging estimates and the of possible errors, such  as cross-contamination
kriging standard deviations are shown in Fig- and representativeness of the sample.  Duplicate
ures 5-6c and 5-6d, and the univariate kriging samples for the contaminant in the water-quality
estimate statistics are listed in Table 5-2 examples indicate as much as 15 percent varia-
(bedrock C). bility in reported results.  This variability is not

5-4.  Water-Quality Examples

a. The following examples are for water-
quality information consisting of concentrations

water was less than about 23 m.  Several analytical

entirely unusual and is most likely related to the
integrity of the analytical method or the method in
which the sample media was aggregated during
sample collection. 
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b. Measured locations are shown in Fig- d. The residuals are symmetrically distribu-
ure 5-7 and the basic univariate statistics are listed ted, (Figure 5-8d).  However, the scatterplot (Fig-
in Table 4-1  (water quality A).  An initial review ure 5-8c) indicates that small concentrations are
of the data indicated three important features. overestimated and that large concentrations are

(1)  The data seemed to have strong anisotropy does not indicate an error in the model, but rather,
at about 150 counterclockwise degrees to the east- indicates a consequence of data that have a large
west baseline. nugget compared to the sill; in this example the

(2)  The data required a natural log transfor- large nugget decreases the predictive capacity of
mation so the distribution was approximated by a the model and increases the smoothing introduced
normal distribution. by kriging.

(3)  No trends were indicated during prelimi- e. The established variogram then was used,
nary exploration, and ordinary kriging was tenta- along with the measured locations, to produce
tively selected as the appropriate technique.  ordinary kriging estimates for all points in a 40-by-

c. Natural log transformations are routinely For the kriging procedure, a search radius of about
needed for concentration data that vary over sev- 1,524 m with maximum of 16 and a minimum of
eral orders of magnitude, which is common in 8 locations was specified.  Gray- scale maps of
areas of contaminant plumes.  The data were kriging estimates, back transformed to concentra-
transformed to log space and fit acceptable criteria tions and in log space, as well as the kriging stan-
for normality.  After transformation to log space, dard deviations in log space, are shown in Fig-
the techniques described in Chapter 4 were used ures 5-9a, 5-9b, and 5-9c.
to guide the following steps for variogram
construction: f. The back-transformation procedure was a

(1)  An exponential model was used to fit a estimates.  Such a back-transformation does not
directional variogram at an angle of 150 counter- use bias-correction factors to deal with moment
clockwise degrees to the east-west baseline.  The bias and, consequently, the back-transformed
variogram had a nugget of 1.00 log concentration values must be interpreted as a median value
squared, a sill of 3.20 log concentration squared, rather than a mean value.  The simple back-
and a range of 1,295 m [Figure 5-8a and Table 5-1 transformation, however, is convenient and was
(water quality A)]. performed, principally, to enhance visual inter-

(2)  An exponential model was also fit to a tistics for the log-space kriging estimates are listed
directional variogram at an angle of 240 counter- in Table 5-2 (water quality A).  The kriging results
clockwise degrees to the east-west baseline.  The do have noticeable smoothing; however,  they also
variogram had a nugget of 1.00 log concentration indicate a plume emanating from an area just
squared, a sill of 3.20 log concentration squared, northwest of the center of the area and movement,
and a range of 229 m [Figure 5-8b and Table 5-1 as well as some dispersion, to the southeast; the
(water quality A)]. estimates are a very good representation of the

(3)  Cross-validation was performed using the
geometric anisotropy of the two variograms and g. An additional comment concerning log
the results [Figures 5-8c and 5-8d, and Table 5-1 transformations is appropriate.  To indicate the
(water quality A)] were acceptable. effect of the log transform on probabilities in 

underestimated.  This discrepancy in the estimates

nugget is approximately 30 percent of the sill.  The

20 grid using a grid spacing of about 91-by-91 m. 

simple exponentiation of the log space kriging

pretation of the kriging estimates.  Univariate sta-

results from many other more elaborate studies.
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converting, or back-transforming, kriging esti- (3)  A spherical model also was fit to an
mates, the kriging estimates and the kriging stan- anisotropic variogram at an angle of 240 deg
dard deviations, in log space, were used to estimate counterclockwise to the east-west baseline.  The
the one-sided 95th percentile at each kriging- variogram had a nugget of 0.05 indicator units
estimate location according to the formula: squared, a sill of 0.25 indicator units squared, and

   (5-1)

where (Ẑ x0 0) ( is the kriging estimate at location x ,
in log space, and F (x ) is the corresponding krig-k 0

ing standard deviation in log space.  The resulting
map is shown in Figure 5-9d.  Such a map can be
used to indicate areas where the true concentration
has only a 5-percent chance of exceeding the value
shown.  

h. To perform indicator kriging, the indicator
transformation, as described in Chapter 2, was
applied.  An indicator cutoff equal to the median
value of 270 for the untransformed measured data
was selected.  The model for indicator kriging esti-
mates the probability that the concentration would
be less than the indicator cutoff.  The  techniques
described in Chapter 4 were used to guide the fol-
lowing steps in variogram construction:

(1)  No trends were indicated during prelimi-
nary exploration, and ordinary kriging was tenta-
tively selected as the appropriate technique.

(2)  A spherical model was used to fit an
anisotropic variogram at an angle of 150 deg
counterclockwise to the east-west baseline.  The
variogram had a nugget of 0.05 indicator units
squared, a sill of 0.25 indicator units squared, and
a range of 610 m [Figure 5-10a and Table 5-1
(water quality B)].

a range of 213 m [Figure 5-10b and Table 5-1
(water quality B].

i. The established variogram, along with the
indicator transform of the measured data, was used
to produce ordinary kriging estimates for the same
grid and search criteria as the first water-quality
example.  A gray-scale map of the kriging esti-
mates is shown in Figure 5-11.  The kriging indi-
cator map provides a gridded estimate for the
probability of contaminant values being less than
the indicator cutoff, which is a concentration of
270 in this example.

j. The cutoff value selected for the preceding
indicator kriging example is probably higher than
many investigators involved in HTRW site investi-
gations would like to use.  In this case the number
of measurements [66 in Table 4-1 (water qual-
ity B)] used in this example, which is probably a
high number of measurements for typical HTRW
site investigations, would not permit construction
of an indicator variogram for indicator values
much lower than the median.  An alternative to this
problem would be to assume that the log-
transformed kriging model developed in the first
water-quality example is correct and to rely on the
kriging estimates from that model to determine
areas greater than or less than some indicator
value.  The same estimates also could be used to
compute the probability that the concentration was
less than some arbitrarily selected value.
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Chapter 6
Review of Kriging Applications

This chapter will  briefly treat three principal top-
ics; applicability of kriging techniques, important
elements that need to be addressed in kriging appli-
cations, and errors in measured data.  Much of the
information presented in this section has been
gathered from other sections of this ETL and is
presented collectively here. The items identified as
important to kriging applications may be helpful in
assessing kriging applications under review. 

6-1.  Applicability of Kriging

a. In the preceding sections of this ETL, the
theory of kriging techniques has been summarized,
and examples have been given to indicate the util-
ity of kriging techniques in HTRW site investiga-
tions.  The examples presented were selected so
that kriging would provide satisfactory results or
be applicable.  Additionally, the examples were
designed so that, for the purposes of demonstra-
tion, some sort of adjustment of the data was
needed; that is, drift was removed or transforma-
tions were made.

b. Investigators are very likely to have data
for which, although, in a strict sense, kriging may
be applicable, results may be unsatisfactory.  A
good deal of fundamental information that may be
used to establish how satisfactory application of
kriging techniques might be has been presented in
the preceding sections of this ETL.  In particular,
Chapter 4 includes a detailed discussion on vario-
gram construction, the preliminary step in any
kriging application, and systematically describes
many decisions in this process that need attention. 
If the investigator cannot construct or otherwise
obtain a variogram that has structure, then the
results of a kriging application may not be satis-
factory.  Some additional discussion designed to
guide investigators in evaluating the amount of
data that may be required for kriging applications
is presented in this section.  This discussion will
assume that the measured data are correct; a

separate and brief discussion of measurement
errors will also be presented in this section.

c. Many investigators will have a tendency to
focus on the amount of measured data that is avail-
able as an initial consideration. It is important for
the investigator to realize that decisions concerning
the applicability of kriging techniques cannot be
based simply on the amount of measured data. 
However, unless the investigator is presented with
a reliable variogram, the amount and spatial distri-
bution of measured data can be a constraint.  If,
for instance, the investigator has fewer than 25
measured values at optimal locations from the
field, there may not be enough data to confidently
estimate Gaussian variogram parameters, a smaller
amount of measured data may be suitable for other
variogram models. 

d. The amount of data needed to apply krig-
ing techniques is not easy to determine, but infor-
mation in this ETL, especially in Chapter 4, and
the literature cited can provide some guidance. 
Section 4-4 points out that a good minimum for the
number of pairs of locations in each variogram lag
is 30 and the American Society for Testing and
Materials (Standard D 5922-96) has suggested that
20 may work well also.  Most investigators would
probably feel comfortable defining a Gaussian
form (which, because it has more inflection, is
more difficult to fit compared to the other standard
variogram models) with 8 to 10 optimally located
sample variogram points (enough points to define
the nugget, two areas of curvature, and the sill).  In
this ideal case, about 25 measured values would be
needed to fulfill the conservative minimum of
30 pairs per lag.  In this case, the relatively few
measured data points need to be systematically
located so that the optimally located variogram
points can be computed.  If the measured data were
not located systematically, as is usually the case,
then more measured data would be needed.

e. Once sample variogram points meeting the
required number of pairs of locations can be
defined, the investigator needs to have a resulting
variogram that has structure.  The variogram, for
instance, may simply exhibit noise about a
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horizontal line and have no structure.  If measured nonstationarity occurs as a gradual change. 
data are clustered and the lags have been mini- HTRW site investigations may present cases,
mized to meet the required number of pairs of loca- especially when dealing with water- quality data in
tions, the variogram may seem horizontal because and around plumes, that have abrupt step-like
it is dominated by small-scale effects in the changes at plume boundaries and do not appear as
clustered data.  The investigator then has latitude regional drift.  In these cases the investigator needs
to adjust the lags and attempt to balance the lag to be aware that without knowledge of the plume
spacing and required number of pairs of locations, boundaries, points from within the plume will be
as described in section 4-4.  However, the vario- grouped with points from outside the plume in
gram could also seem horizontal because the actual computing the sample variogram. The effect of this
sill is reached within a very small lag.  If that lag is problem is minimized as long as the investigator
smaller than the minimum spacing of measured can define lags that allow data points within the
data, obtaining structure in the variogram would plume to be grouped together. 
not be possible.  If the investigator has a vario-
gram with no structure, the measured data need to c. The construction of the variogram needs to
be considered independent, and kriging techniques, be described.  The description needs to address the
at the lag of the measured data, would be ineffec- number of pairs of locations in each variogram lag
tive or at least offer little advantage over other and to demonstrate that the variogram has struc-
interpolation techniques. ture.  A plot of the variogram is helpful to demon-

6-2.  Important Elements of Kriging
Applications

a. Many important elements of kriging appli- adjustments similar to the adjustments presented in
cations have been discussed in this ETL.  These section 4-5b.
discussions have been presented as a systematic
and sequential method designed to provide guid- d. The variogram cross-validation statistics
ance in kriging applications.  Occasionally, an described in section 4-9 are useful and, if avail-
investigator will be presented with the results of a able, they can aid in the evaluation of a kriging
previous kriging application and will need to eval- application; authoritative and definitive kriging
uate the application before deciding whether or not applications should include cross-validation. 
to use the results.  This section presents a brief Cross-validation statistics need to conform to the
review of some important elements of kriging guidelines discussed in section 4-9.  Section 4-9b
applications that such an investigator may use in indicates that the cross-validation exercise needs to
that evaluation.  For a more detailed discussion of balance minimizing the kriging cross-validation
important elements of geostatistical applications, errors with efforts to guard against bias.  Also, as
the reader is referred to the American Society of discussed in section 4-9b, if probabilistic state-
Testing and Materials (Standard D 5549-94) for ments are part of the kriging application, there
content of geostatistical investigations. needs to be some demonstration about the normal-

b. The presence of or lack of stationarity in validation probability plots included with the
the spatial mean needs to be demonstrated defini- examples in Chapter 5.
tively.  If the spatial mean is nonstationary, then
drift is indicated and appropriate measures to e. Maps of the kriging estimates and standard
establish stationarity, which are similar to the deviations need to be presented or discussed.  The
measures presented in section 4-3, need to be part maps of kriging estimates need to conform to any
of the application.  In ideal situations, qualitative information about the information

strate the presence or absence of structure.  The
variogram construction discussion also needs to
establish the presence of or lack of isotropy.  If
anisotropy is present, its nature needs to be estab-
lished, and it needs to be addressed by variogram

ity of the reduced kriging error such as the cross-



ETL 1110-1-175
30 Jun 97

6-3

portrayed on the maps that is available to the concern contamination, there can be large ranges
investigator.  The maps of kriged standard devia- of values for data involving contaminant concen-
tions can be used to determine where there are trations, and these large ranges have a tendency to
large areas of uncertainty in the kriging estimates. increase the  incidence of data that may seem to be

f. Finally, the variogram and kriging algo- presence of  high concentrations of organic mate-
rithms are most useful as interpolation rather than rials that may create challenging analytical prob-
extrapolation tools.  Once the application extends lems in laboratory determinations that also may
to areas beyond the geographic extremes of the lead to reported values that seem to be statistical
measured data, or perhaps those extremes plus the outliers.  In either case, the kriging practitioner is
range, there needs to be some qualification of the likely to find that the apparent outliers have a
area of extrapolation.  For instance, in universal strong effect on the results of the kriging
kriging, the practitioner would need to have some application.
assurance that the conditions of drift defined in the
study area continue into the area of extrapolation.  c. When HTRW site investigations find data

6-3.  Errors in Measured Data

a. Data associated with HTRW site investi- identify points that may be outliers and warrant
gations have the same opportunities for errors that further investigation.  Often data that appear to be
most investigations do.  The errors may involve, outliers may be the most important and meaningful
among others, bias, inaccuracy, or lack of repre- data of all measurements.  For example, in the first
sentativeness.  The classical nature of these errors case described in the preceding paragraph, appar-
is described in EM 200-1-2, “Technical Project ent outliers often are representative values.  In the
Planning,” (U.S. Army Corps of Engineers 1995), second case, the reported value may be an errone-
which describes HTRW data-quality design. ous determination that has been affected by the

b. The presence of contamination may com- matrix.  The investigator needs to either possess or
plicate the function of errors in HTRW site have access to qualitative or institutional knowl-
investigations.  Because these investigations often edge that will aid in outlier interpretation.

statistical outliers.  Even more complicating is the

that seem to be outliers, the data need to be very
carefully evaluated before removal is seriously
contemplated.  Automated outlier detection tools,
as suggested in section 4-8, may best be used to

extremely contaminated nature of the sample
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Chapter 7
Other Spatial Prediction Techniques

7-1.  General

a. In this chapter, some alternative
approaches to spatial prediction are discussed.  At
the beginning of Chapter 2, the distinction between
stochastic and nonstochastic techniques for spatial
prediction was discussed.  Kriging, the main sub-
ject of this ETL, is a stochastic technique because
of the structure that is imposed in terms of an
underlying random process (the regionalized
variables) with joint probability distributions that
obey certain assumptions.  Kriging yields the
predictor that is statistically optimal in the sense
that it is the best linear unbiased predictor, given
certain assumptions that are detailed in Chapter 2. 
There are other stochastic techniques that are less
well-known than kriging in applications, such as
Markov-random-field prediction and Bayesian
nonparametric smoothing (see Cressie (1991)), but
these will not be discussed here.

b.  Several techniques that are often applied
in a nonstochastic setting will be discussed.  Tech-
niques applied in such a setting are typically
applied strictly empirically and not evaluated with
respect to rigorous statistical criteria such as mean
squared prediction error, although, as discussed in
Chapter 2, such criteria may be applied in certain
of the techniques such as simple average and trend
analysis.  It has been shown in this ETL that there
are some compelling advantages for assuming
some kind of stochastic setting.  However, the sim-
plicity of not having to postulate and justify the
structure and assumptions inherent in stochastic
analyses might be considered one advantage of
nonstochastic techniques, and such an analysis
may be perfectly adequate for certain problems.  In
addition to statistical optimality and simplicity,
there are other considerations in selecting a spatial
prediction technique, such as ease of computation,
sensitivity to data errors, and whether the predic-
tors are exact interpolators; that is, match the mea-
surements exactly at the measurement locations x ,1

x ,..., x .  The last property is one that needs to be2 n

given careful consideration by the practitioner. 
Kriging, as it is usually applied, is an exact inter-
polator.  Questions may be raised, however, about
whether this is a desirable property if it is known
that the measurements are contaminated with a
considerable amount of measurement error.  One
advantage of stochastic methods in general is that
existence of measurement error may be incorpo-
rated objectively, and, in fact, some kriging soft-
ware packages (including STATPAC) have this
feature, resulting in a surface that is not an exact
interpolator.  Several of the nonstochastic methods
discussed in this section depend on a parameter that
controls the deviation from exact interpolation. 
The ability to adjust such a parameter when using
these techniques lends a degree of flexibility to the
practitioner, but selecting the best value may not be
straightforward and may involve considerable
subjectivity on the part of the practitioner.

c. In most of the following techniques, the
predictor of the process at location x  takes the0

form of a linear combination of the measurements
at locations x , i=1, 2,..., n.  Using Z (x ) to denotei 0

~

an arbitrary predictor (the notation distinguishes
the predictors to be discussed in this section from
the kriging predictor, which is denoted by Z (x ),

~
0

the definition of Z  (x ) is
~

0

(7-1)

Although this form is the same form that is taken
by the kriging predictor, the difference is in the way
the coefficients w  are computed.i

7-2.  Global Measure of Central
Tendency (Simple Averaging)

a. The predictor for the process at any
location x  is the simple average of the measure-0

ments; that is, the weights w  are all equal and arei

given by Cressie (1991)
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This predictor represents the smoothest possible k = 1, the predictor is an exact interpolator and is
predictor surface.  In using this predictor, a certain constant on the Voronoi polygons (see section 7-5)
degree of spatial homogeneity is assumed.  No induced by the measurement locations.
attempt is made to incorporate any detectable
patterns (or trends) in the mean or variance of the c. There are several variations of this pre-
data as a function of location, and the fact that dictor.  In one such variation, a distance r may be
measurements made at points that are close to each fixed (rather than fixing k) and averages over loca-
other may be related is disregarded.  Such a pre- tions that are within distance r of x  taken.  Addi-
dictor has the advantage of being very simple to tionally, a moving-median may be used rather than
compute; it needs no estimation of a variogram or a moving average.  Sorting and testing distances
other model parameters.  The disadvantage is that can slow computations relative to obtaining the
representing the spatial field by a single value simple average, and use of medians rather than
ignores much of the relevant and interesting struc- means leads to a more resistant (to outliers)
ture that may be very helpful in improving predictor.
predictions.

b. As discussed in section 2-4, if applied in a
stochastic setting, this predictor would be optimal
(best linear unbiased) if there is no drift and if
residuals are uncorrelated and have a common a. The weights w  are (Journel and Huijbregts
variance. 1978)

7-3.  Simple Moving Average

a. Let h  be the distance of x  from x , let hi0 0 i [i0]

be the ordered (from smallest to largest) distances,
and fix 1 # k # n.  Then the weights w  arei

(Cressie 1991)

(7-3)

Thus, this predictor is the average of the measure-
ments at the k nearest locations from x .  0

b. If k is equal to n, this predictor is identical
to the simple average, with weights as given in
Equation 7-2.  A choice of k smaller than n reflects
an assumption that the predictor needs to incor-
porate more of the local fluctuation observed in the
data, or, equivalently, that measurements at loca-
tions near x  should be more informative than0

measurements at other locations in predicting z(x );0

the smaller k is, the more variable the predictor.  If

0

7-4.  Inverse-Distance Squared Weighted
Average

i

(7-4)

where again h  is the distance of x  from x .i0 0 i

b. In the simple moving average, weights are
the same, provided measurement locations are
sufficiently close to the prediction location and are
zero otherwise.  For the inverse-distance squared
method, weights are forced to decrease in a
smoother manner as distance from the prediction
location increases.  This predictor again has the
advantage of being easy to compute.  Another
feature of this predictor is that it is an exact inter-
polator.  In addition, the exponent 2 of h  may bei0

changed to any positive number, giving the user
some flexibility in determining the rate of decrease
of weights as a function of distance from x .  Isaaks0

and Srivastava (1989, pp. 257-259) present an
example illustrating the effects on weights of
changing the exponent.
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7-5.  Triangulation

a. To compute this predictor, the region R is point.
partitioned into what are referred to as Voronoi
polygons V , V ,..., V , with V  being the set of c. Computation of this predictor is slower1 2 n i

locations closer to measurement location x  than to than computation of those in sections 7-2, 7-3, andi

any other measurement location.  If any two poly- 7-4.  The predictor is an exact interpolator, and the
gons, V  and V , share a common boundary, x  and surface produced is continuous, but not differen-i j i

x  are joined with a straight line.  The collection of tiable at the edges of the triangulation.j

all such lines defines what is known as the
Delaunay triangulation.  There will be one such
triangle containing the prediction location x ; the0

vertices of this triangle, which are measurement
locations, are labelled x , x , and x .  The spatial a. In spline modeling, the measurements arej k 1

prediction at x  will be the planar interpolant interpolated using combinations of certain so-called0

through the coordinates (x , z(x )), (x , z(x )), and basis functions.  These basis functions are usuallyi j k k

(x  z(x )).  Joining x  and x , x , and x , three sub- taken to be piecewise polynomials of a certain1, 1 0 j k 1

triangles are formed.  The weights w  are (Cressie degree, say k, which is determined by the user.  Thei

1991) coefficients of these polynomials are chosen so that

(7-5)

where A  is the area of the subtriangle oppositei

vertex x .i

b. These definitions are illustrated in Fig-
ure 7-1.  In this figure, the dashed lines depict the
Voronoi polygons associated with points x , x , ...,1 2

x , and the solid lines define the Delaunay triangu-6

lation.  Vertices of the triangle containing the pre-
diction point x  are x , x , and x , and dotted lines0 1 5 6

show the subtriangles defining the associated area
A , A ,  A .  For this example, j, k, and l in the1 5 6

general Equation 7-5 are 1, 5, and 6, so the
weights assigned to points x ,  x , and x  are,1 5 6

respectively,

It is seen that the weight assigned to a point is pro-
portional to the area of the triangle opposite the

7-6.  Splines

the function values and the first k-1 derivatives
agree at the locations where they join.  The larger k
is, the smoother will be the prediction surface. 
Spline techniques are often applied in a non-
stochastic framework; in such a context they
represent a way of fitting a surface with certain
smoothness properties to measurements at a set of
locations with no explicit consideration of statisti-
cal optimality.  There is, however, a considerable
body of work in which this technique is applied in a
stochastic setting.  Splines may be used, for
example, in nonparametric regression estimation
problems (Wegman and Wright 1983).

b. A typical approach to formulating a spline
problem is to pose it as an optimization problem. 
In one special case, it is assumed that the first two
derivatives of the prediction surface exist, which is
a way of imposing a certain degree of smoothness,
and that the spline function minimizes

(7-7)

where Q is a term that depends on the first two
derivatives of the predictor surface.  The parame-
ter 0 is a nonnegative number that needs to be
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Figure 7-1.  Diagram showing Voronoi polygons

specified by the user; the value of this parameter smoothing parameter 0 to be > 0 renders the
reflects the trade-off between goodness of fit to the computational problem more complex.
data, measured by the first term, and smoothness,
as measured by Q.  If 0 is chosen to be 0, the c. Under some conditions a solution to the
spline is an exact interpolator and passes through optimization problem (Equation 7-7) may also be
all the data points.  If 0 > 0, the spline is not an obtained by a kriging algorithm if the smoothing
exact interpolator.  (Splines that are not exact parameter 0 is taken to be equal to the variance of
interpolators are referred to as smoothing splines.) measurement error and if a special form is chosen
There are a number of numerical procedures that for the covariance function.  Therefore, in this
 may be used for fitting splines, but allowing the situation, spline approximation is a special type of
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kriging.  However, the variogram that needs to be mean-squared prediction error is smallest among
used in the kriging equations to make the kriging all predictors that are linear in the measurements. 
predictor equivalent to the spline predictor is This optimality property is local, in that the mean-
determined by the basis functions selected for the squared error of predictions at unsampled locations
spline.  Because the type of basis functions used is considered one at a time is minimized, without
subjective on the part of the user, the resulting specific regard to preservation of global spatial
equivalent variogram may not be representative of features.  If, however, the actual realization z(x)
the true variogram of the data.  Because kriging could be compared to the kriged prediction surface
uses the data to indicate reasonable variogram based on n measured values, the kriged surface
choices, kriging has an important advantage over would be much smoother than the actual surface,
splines.  Another advantage of placing the problem especially in regions of sparser sampling.  Thus,
in the kriging framework is the interpretation of the the kriged surface will be a good and realistic
smoothing parameter in terms of measurement representation of reality in the sense that the n
errors.  In many cases, an objective estimate of the measured values are honored, but it will be less
magnitude of measurement error can be obtained. realistic with respect to global properties, such as
The connections between kriging and splines are overall variability.  
discussed further by Wegman and Wright (1983),
Watson (1984), and Cressie (1991). b. The purpose of simulation is to produce

7-7.  Trend-Surface Analysis

a. Trend-surface analysis is the process of by using numbers that are drawn randomly (Monte
fitting a function, such as that in Equation 2-43, Carlo) to impart variability to the simulated sur-
using least squares to determine the coefficients face, making the simulated surface more realistic in
that yield the best fit.  Computationally, trend- preserving the overall appearance of the actual
surface analysis is equivalent to universal kriging surface.  Generally speaking, simulation uses the
with an assumption that the Z*(x ) are uncorre- idea that the true value of a random surface may bei

lated.  Thus, there is no need to estimate a vario- expressed as the sum of a predicted value (which is
gram, and readily available regression packages obtained by kriging) plus a random error, which
may be used for estimating the coefficients.  As in varies spatially and depends on the random
universal kriging, polynomial surfaces are the most numbers drawn.  Generally a number of indepen-
commonly used. dent realizations will be generated, and these

b. When trend surfaces are applied in a sto- representations of reality.  
chastic setting, the resulting predictor will be opti-
mal if deviations from the surface are uncorrelated c. A simulation algorithm is said to be condi-
and have a common variance. tional if the resulting realizations agree with the

7-8.  Simulation

a. Consider again a regionalized random method of conditional simulation is known as
variable Z(x), where x is a location in a two- sequential Gaussian simulation (Deutsch and
dimensional study region R.  Kriging is an inter- Journel (1992), pp. 141-143).  Another, more com-
polation algorithm that yields spatial predictions plicated, Gaussian simulation method that is par-8Z
(x) that are best, or optimal, in the sense that has
been discussed at some length in this ETL.  The

one or more spatial surfaces (realizations) that are
more realistic in preserving global properties than
the surface produced by interpolation algorithms,
such as kriging.  These realizations are produced

realizations will be taken to be equally probable

measurements at measurement locations x , x , ...,1 2

x .  If the underlying process Z(x) is assumed to ben

Gaussian (or if a transformation may be found that
makes the process Gaussian), the most common

ticularly useful for three-dimensional simulations
because of its computational efficiency is the



ETL 1110-1-175
30 Jun 97

7-6

turning-bands method (Deutsch and Journel 1992, when analyzed in histogram form, approximates
Journel and Huijbregts 1978). the probability distribution of potential measure-

d. In sequential Gaussian simulation a set of 25 (2.5 percent) of the values less than the lower
grid points for which simulated values are desired end and 25 of the values larger than the upper end
is defined and the points are addressed sequentially were constructed, the interval would almost corre-
from location to location along a predetermined spond, as expected, to the 95-percent prediction
path.  At each location, a specified set of neighbor- interval to  Z (x ) - 1.96F  (x ) to Z (x ) + 1.96F
ing conditioning data is retained, including the (x ) discussed in section 2-6b.  Thus, for this single
original data and simulated grid-location values at location, the simulation has not produced much
previously traversed grid locations along the path. more information than kriging alone would have
Then, a random number is generated from a produced.  The real value of simulation, however,
Gaussian distribution with conditional mean and is that realizations not just at a single location, but
variance determined using a kriging algorithm, and at all of the grid locations jointly, are obtained. 
the value of the random number determines the These realizations can be used to calculate proba-
simulated process at this location.  The conditional bilities associated with any number of spatial loca-
Gaussian distribution used in simulation is identi- tions together.  For example, the probability that
cal to the conditional distribution discussed in the largest (maximum) contaminant value over a
section 2-6b.  An idea of the computational certain subregion is greater than a particular con-
requirements can be obtained from the fact that a centration might be assessed.  (If the word “larg-
kriging algorithm needs to be applied for each est” here were replaced with “average,” then block
simulation location.  For multiple realizations, if kriging could be used to obtain the answer.)
the path connecting the grid points is kept the
same, the kriging equations need to be solved for g. A central point that needs to be empha-
only the first simulation.  However, implementa- sized is that simulation is especially useful when
tion of this procedure needs to take into considera- probabilities associated with complicated, usually
tion the assumptions concerning the existence of nonlinear, functions of the regionalized variables
drift; the details of such an implementation are over a region need to be analyzed.  The maximum
beyond the scope of this ETL. function mentioned in the preceding paragraph is

e. A sequential algorithm like this may also sider the problem of determining placement of
be applied in the context of indicator kriging (see groundwater monitoring wells to detect and moni-
section 2-6c).  At each grid point along the path, a tor groundwater contamination emanating from a
(Bernouli) random variable taking on only two potential point source.  Given an existing set of
possible values, 0 or 1, is generated, with the rela- hydraulic-head data, kriging might be applied and
tive probability of these two values being deter- flow lines determined from resulting hydraulic-
mined by indicator kriging applied, as in the head gradients.  Intersection of the flow line from
previous paragraph, to the original observed indi- the point source with the regional boundary then
cator data and the previously simulated indicator might be used to determine monitoring well place-
values. ment.  Conditional simulation would be useful to

f. To get an idea of how simulation results well placement or to give an indication of how
might be used in a risk-assessment setting, assume many monitoring wells might be appropriate.  In
again that the underlying process is Gaussian and this case, the variable of interest, well location, is a
that 1,000 conditional realizations have been complicated function of hydraulic heads so this is a
generated.  If a single grid point x  (which is not a problem for which simulation is well-suited.  The0

measurement point) is considered, then the simu- reader may refer to Easley, Borgman, and Weber
ation has produced 1,000 values at x , which, 0

ments at that location.  If an interval with exactly

8
0 K 0 0 K

8

0

one simple example.  For another example, con-

determine uncertainty associated with location of
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(1991) for a more detailed discussion of this type hydraulic-conductivity realizations to be used as
of application.  input to a model that produces as output a set of

h. The complicated functions of interest in Easley, and Englund (1991) discuss how ground-
groundwater studies often involve physically based water modeling might be used with conditional
groundwater flow models.  Conditional simulation simulation to study the monitoring-well-placement
may be used, for example, to generate a suite of problem discussed in the preceding paragraph.

corresponding hydraulic-head realizations.  Weber,
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Appendix B:  Notation

a Angle for directional variogram C(x ,x ) Covariance of data values at locations

c Generic constant used for cutoff value points i and j
in probability distribution or indicator
transformation   E Expectation

e Kriging error I(.) Indicator function  

e Reduced kriging error   K Number of variogram bins~

f Explanatory variables used in drift N(.) Number of squared differences in
equations variogram bin

g Nugget of variogram   P Probability

h Lag or distance between two data points S Sample variance on n observations

n Number of data points V Voronoi polygon

m Number of locations in a given block    Var Population variance

 W(x) Co-kriging random variable atr Range of variogram

s Sill of variogram

w Weight

x(u,v) Location in terms of coordinates u and v

  z(x) Measurement of Z at location x

  z(x ) Kriging estimate using measured data^
1

A Area of triangle

B Area designation in block kriging

C Population covariance function

C Sample covariance function^

1 2

x  and x1 2

b Slope of variogram
D Difference in values between dataij

n
2

location  x

  Y(x) Transformed variable at location x

Z Regionalized random variable

  Z(x) Potential value of Z at location x

  Z(x) Predictor or estimate of Z at location8
x, obtained from kriging

Z*(x) Residuals of Z(x) 

 Z(x) Arbitrary predictor of Z at location x^

Sample mean of n observations

$ Regression coefficient used in polyno-
mial representation for drift
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F(x) Spatial standard deviation at location8( Sample variogram

( Theoretical variogram

((h) Theoretical variogram for lag h

8 Optimization coefficient

0 Parameter used in spline analysis

D (h) Correlation function as function of h

x

F (x) Spatial variance at location x2

F (x) Kriging standard deviation atk

location x

Kriging variance at location x

µ(x) Spatial mean at location x


